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Abstract

Cancer is a leading cause of mortality worldwide, claiming the lives of nearly 8 million

people in 2008 alone. To effectively treat cancer, we need a holistic understanding of how

aberrations in key cellular pathways can drive tumor formation. Current research, however,

remains predominantly focused on molecular data, despite the fact that clinical diagnosis

and prognostication rely primarily on the morphologic analysis of histologic data.

In this thesis, we develop 1) an image processing pipeline capable of extracting

clinically-relevant morphological features from whole-slide tissue samples, and 2) a system

of multi-task regressions to robustly and efficiently associate gene expression levels with

transformations in specific morphological traits. These allow us to distill massive amounts

of histological and molecular data into a set of unbiased and testable hypotheses regarding

the effect of specific genes on particular clinically-relevant aspects of tumor morphology.

We demonstrate our system on matching histological and molecular data from a total

of 574 breast cancer patients from two independent cohorts: 248 from the Netherlands

Cancer Institute, and 326 from the Cancer Genome Atlas. Our results corroborate many

associations between known onco- and tumor-suppressor- genes and tumor morphology,

including the recently discovered role of CDC6 in epithelial-mesenchymal transition. We

also identify several putative and previously unknown key genes in breast carcinoma, to-

gether with their purported role in tumor morphology, e.g., the role of VIPR2 in promotion

of the stromal environment. These promising results pave the way for future investigative

work into these genes, and show the viability of our integrative analysis of morphological

and molecular data.
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Chapter 1

Introduction

Cancer is a disease of the genome, and to treat it we must first understand and character-

ize the underlying genetic pathways that drive cancer growth. But every tumor is unique,

and every cancer cell contains an overwhelming number of molecular aberrations and ge-

netic lesions, the majority of which are non-essential “passenger” mutations. How can we

sift through the chaff to find the important “driver” mutations - and the crucial molecular

pathways - that contain the key to cancer?

Our answer to that question is predicated on one central hypothesis: that changes in

the expression levels of key driver genes will manifest as corresponding changes in the

underlying morphology of the tumor. In other words, genes whose expression levels are

strongly associated with clinically-relevant aspects of tumor morphology are likely to be

the driver genes that we seek. Critical genetic lesions in tumors must manifest themselves

through changes in cell morphology; if they do not have any discernible effect on the

number, size, or shape of the cancer cells, then they cannot, by definition, contribute to

the growth of the tumor. It is for this reason that the review of histological slides remains

the gold standard in cancer diagnosis and treatment today. While morphological grading

of tumor cell morphology is known to be a good prognostic for many different types of

cancer, in contrast, molecular methods such as genotyping are still in their infancy and are

not yet accurate or convenient enough for widespread deployment.

This thesis explores in detail the use of both morphological and molecular data to iden-

tify putative driver genes and pathways underlying tumor formation, and represents what
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CHAPTER 1. INTRODUCTION 2

is to the best of our knowledge the first such integrative morpho-molecular analysis in can-

cer biology. Central to the thesis is our development of 1) an image processing pipeline

capable of extracting high-level, clinically-relevant morphological features from digitized

10,000-megapixel whole-slide tissue samples, and 2) a system of multi-task regressions

to robustly and efficiently associate gene expression levels with transformations in specific

morphological traits. Taken together, these allow us to distill massive amounts of histologi-

cal and molecular data into a set of unbiased and testable hypotheses regarding the effect of

specific genes on particular clinically-relevant aspects of tumor morphology. In subsequent

sections, we will flesh out the details of our system, and demonstrate it on half a terabyte of

data from a total of 574 breast cancer patients across a spectrum of races, ages, and other

demographics.

The advent of modern targeted therapeutics underscores the importance of elucidating

the key functional mechanisms driving carcinogenesis, and it is widely believed that the key

to accomplishing this lies in so-called “Big Data”, with particular reference to the massive

explosion in data from the genomics revolution. Yet genomic data alone cannot be a silver

bullet. To paint a comprehensive picture, we need intelligent integration and analysis of the

diversity of data modalities available to us: raw DNA sequences, levels of gene expression,

gene methylation status, clinical data, patient demographic information, and so on. This

thesis, by integrating histological and molecular data, represents our attempt at a step in

that direction.



Chapter 2

Background and Related Work

2.1 Cancer: Biology and Treatment

“All substances are poisonous, there is none that is not a poison; the right

dose differentiates a poison from a remedy.”

Paracelsus, alchemist and physician, 1538 (Weinberg, 2007)

Cancer is a disease of the genome – an uncontrollable growth of cells driven by mutations

and other genetic abnormalities accumulated over an organism’s lifetime. Yet to call it a

single disease would be to miss the reason why cancer remains a leading cause of death in

the world, despite the billions of dollars poured into cancer research each year. Because any

case of unchecked cellular replication falls under the umbrella of cancer, no two cancers are

the same, in the way that all cases of Huntington’s disease or other simple genetic disorders

are similar. Instead, behind each tumor is a bewildering and unique array of genetic lesions

- mutations, insertions, deletions, and even large scale chromosomal aberrations, all of

which serve to throw the carefully-orchestrated cell cycle off-kilter.

Faced with the chaotic heterogeneity of cancers, it is no surprise that modern

chemotherapy largely consists of drugs that are unable to effectively discriminate between

cancerous cells and normal cells. (Mukherjee, 2010) These drugs are basically cellular poi-

sons that blithely destroy all cells that come into contact with them. For example, metho-

traxate and fluorouracil, two of the most common chemotherapy drugs in use today, work

3



CHAPTER 2. BACKGROUND AND RELATED WORK 4

by inhibiting DNA synthesis; the efficacy of these drugs stem from the fact that cancerous

cells divide far more rapidly than normal cells, and are thus more strongly affected by the

drugs. (Ahmad et al., 1998) As expected, these cytotoxic drugs have adverse systemic ef-

fects, which give rise to observable and debilitating side effects: hair loss, nausea, fatigue,

and so on. These side effects turn chemotherapy into a delicate balancing act between try-

ing to kill off cancerous cells while keeping the patient’s normal cells alive. Unfortunately,

in a large majority of cases, such chemotherapy does not result in a complete cure.

In the last couple of decades of cancer research, however, researchers have started to

identify a small set of cellular pathways that appear persistently dysregulated in a large pro-

portion of cancers, giving rise to the hope that there might be some method in the madness

that is the cancer genome. Indeed, it is now strongly suspected that out of the thousands

of genetic lesions in any given cancer cell, only a handful are so-called “driver mutations”

that are powering the growth of the tumor, with the other lesions being “passenger mu-

tations” that arise from damaged DNA repair mechanisms but do not directly contribute

to tumorigenesis. (Greenman et al., 2007; Beroukhim et al., 2010) Moreover, these driver

mutations tend to reoccur in the same genes and cellular pathways; for example, a recent

study published by the Cancer Genome Atlas Research Network showed that 23% of the

206 glioblastoma tumors they analyzed contained inactivating mutations in the NF1 gene.

(Network, 2008)

These discoveries meant that cancers were in some sense more homogeneous than had

been thought, and spurred researchers to develop interventions that could specifically target

these driver mutations without damaging healthy cells. The first success story of this new

wave of “targeted therapeutics” came out in the mid 90s and featured imatinib (Gleevec),

which selectively targets the bcr-abl fusion protein characteristic of chronic myelogenous

leukemia (CML). (O’Brien et al., 2003) In a series of landmark clinical trials, imatinib was

shown to produce stunning remissions in CML patients, raising the 5-year survival rate

from a previously dismal 30% to a far more optimistic 89%. (Pray, 2008)

With the success of other targeted therapeutics like Avastin or Herceptin has come

a shift in cancer research: from trying to find a single silver bullet that would cure all of

cancer to finding a large set of silver bullets, each of which is exceptionally effective against

a small subset of cancers. In order to do this, we first have to understand and carefully
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characterize the molecular networks and pathways underlying each subtype of cancer. This

in itself is a herculean task, as each cell consists of approximately 25,000 genes interacting

in extraordinarily intricate ways, and dysregulation of any of these genes could potentially

lead to cancer. Indeed, despite the successes of drugs like Gleevec and Avastin, there

have been many failed attempts at creating targeted therapeutics: we are only scratching

at the surface of the biology underlying the targeted pathways, and oftentimes the tumors

that we try to treat by blocking particular pathways develop alternative and unforeseen

ways of compensating. Indeed, follow-up studies showed that a significant proportion of

patients developed resistance to Gleevec after many years. (Gambacorti-Passerini et al.,

2003) While the progress made so far has been promising, it is clear that we still have a

long way to go.

2.2 Searching for Driver Mutations

Cancer biologists have traditionally employed methods like genetic screens to tease apart

the mechanisms underlying tumorigenesis, but researchers have increasingly turned to

high-throughput methodologies made possible by the completion of the Human Genome

Project and by the general increase in computational power and decrease in the cost of

large-scale assays and sequencing. In contrast to traditional genetic screens, these high-

throughput methodologies involve automatically sifting through large volumes of data -

genome sequences, gene expression microarrays, patient demographics, etc. - to pick out

promising patterns for further study.

What are some common methods of finding mutations and shared pathways that drive

cancer formation? Perhaps the most straightforward approach is to simply sequence many

tumors and identify recurring somatic mutations and chromosomal abnormalities; this has

been repeatedly shown to be successful to some extent. (Campbell et al., 2010; Jones et al.,

2008; Sjöblom et al., 2006) While this approach is useful for picking up the more obvi-

ous driver mutations, we are rapidly exhausting the “low-hanging fruit” of driver mutations

that are common to a large proportion of cancers, such as those in genes like TP53 or PI3K.

Instead, in recognition of the heterogeneity of cancer, we need to start looking for driver

mutations which affect a smaller proportion of cancers. But it is not easy to distinguish
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between driver and passenger mutations, and the noise from the fact that passenger muta-

tions are often significantly more numerous than the driver mutations makes it difficult for

somatic mutation analysis to pick these “smaller” driver mutations up. Moreover, somatic

mutation analysis typically focuses only on gene-coding areas of the genome, for statistical

and computational reasons. This means that such analyses will not pick up on situations

such as mutations in noncoding regulatory RNAs which could in turn affect the expression

levels of downstream genes.

Sequencing is still expensive to perform in scale, though costs are dropping rapidly.

Today, by far the most common approach to finding driver mutations and pathways is to

work with gene expression microarray data alone (Bild et al., 2006) or more typically, in

combination with data on methylation status, copy number variation obtained via com-

parative genomic hybridization (Adler et al., 2006; Akavia et al., 2010; Beroukhim et al.,

2007; Berger et al.; Taylor et al., 2010), protein-protein interaction networks (Mani et al.,

2008; Cerami et al., 2010), etc. The issue with such approaches is a lack of a super-

vised signal (i.e., an external phenotypic measurement that can be used to determine which

genes/pathways are important), which forces them to largely utilize unsupervised learning

techniques, for example, clustering gene expression data to find common cancer subtypes

(Verhaak et al., 2010) or expression signatures for metastasis (Ramaswamy et al., 2003).

While such techniques have clearly had their own share of successes, the lack of supervi-

sion (as in the case of somatic mutation analysis) makes it hard to pick up on more subtle

signals in the data.

Where supervision has been used, it has mostly come from two sources: survival data

(Vandin et al., 2012), or prior knowledge obtained from studying animal models or other

cancer types in humans (Boehm et al., 2007). Survival data is arguably the “gold standard”,

because we are ultimately concerned with finding mutations and aberrations in pathway

regulation that result in increased mortality. However, it is notoriously noisy, because sur-

vival times can be influenced by a wide variety of other factors, and as a result has not

seen much success in terms of being able to identify driver mutations. The use of prior

knowledge is also problematic; while it is undeniably useful to investigate whether a driver

mutation in a particular type of cancer can drive tumorigenesis in a different type of cancer,
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relying solely on prior knowledge precludes the possibility of identifying novel pathways

and mechanisms.

Where can we find a better - and easily obtainable - source of clinically-relevant phe-

notypic markers that we can use as a supervised signal for the discovery of genetic drivers?

The answer lies in tumor histology and morphology, which as of today still remains a

largely untapped resource in this line of research.

2.3 Quantitative Tumor Morphology

Today, the diagnostic standard of care for virtually all types of (solid) cancer treatment

remains the review of histology images by a pathologist following surgical resection, to-

gether with radiological data in the form of X-ray or MRI scans; this is true in particular

of breast cancer, which we study in this thesis. (Le Doussal et al., 1989; Pereira et al.,

1995; Bloom and Richardson, 1957) This practice of histological examination has been

in place for nearly a hundred years for the simple reason that morphological characteris-

tics of tumors can convey important information about prognosis and possible responses to

treatment. (Patey et al., 1928)

Previous approaches to measuring and using morphological data from tumors have

largely consisted of using a small set of image features hand-picked by pathologists. These

features tend to be “low-level” features such as nuclear size and area, because it is diffi-

cult to obtain features that are more contextual (e.g., distance between nuclei, or between

epithelial nuclei and the stroma). (Teverovskiy et al., 2004; Donovan et al., August 20,

2008; Aaltomaa et al., 1991; Cooper et al., 2012) Moreover, large quantities of digitized

tumor slides and the computational resources needed to process these have been difficult to

obtain. As a result, there has been a relative dearth of high-impact studies using large-scale

morphometric data.

However, recent advances - both in the release of high-throughput data sets, such as the

Cancer Genome Atlas, as well as in computational techniques, have allowed tumor mor-

phology to be quantitated on a large-scale and in an unbiased manner. In a landmark study,

(Beck et al., 2011) showed that one can produce clinically relevant histological features

from digitized tissue microarray cores by first building a classifier to recognize different
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types of tissue (e.g., epithelium vs. stroma), and then extracting both standard morpho-

logical features and higher-level relational features that take these tissue types etc. into

account.

In Chapter 3, we will extend the system in (Beck et al., 2011) to handle whole-slide

tissue samples that are orders of magnitude larger than the tissue microarray cores used in

that study; tissue microarray cores are typically 0.6mm in diameter, whereas our whole-

slide tissue samples can be as large as 30x26mm in size, a difference in area of a factor

of 2750x. First, however, we will study some of the current methods that can be used to

associate gene expression levels with whatever morphological features we might extract.

2.4 Gene-Morphology Regression

Given morphological data for a set of patients, coupled with the corresponding gene expres-

sion data for each patient, how can we find the genes that are mostly strongly associated

with cell morphology? This can be cast as an instance of a regression problem, and in

this section we will cover some mathematical preliminaries and standard approaches to the

problem.

Assume that we have G genes, P morphological traits (where a trait could be, e.g., the

average size of a cell), and N patients. We can represent our gene expression data with

a matrix X ∈ RN×G, and our morphological data with a matrix Y ∈ RN×P. Our goal is

then to find a matrix of regression coefficients W ∈ RG×P, such that if we only had access

to the gene expression data, the “predicted” morphological data XW would be as close

to Y as possible. Note that each row wi ∈ R1×P is the vector of regression coefficients

corresponding to gene i across all P morphological traits.

We can attempt to do this by solving the least-squares regression problem

minimizeW ‖Y −XW‖2
F ,

where ‖ · ‖F denotes the Frobenius matrix norm. This is a common distance metric to

use, as performing ordinary least-squares regression has the property of being the uniform
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minimum variance estimator of W under a certain set of assumptions, such as the residuals

Y −XW being independently and identically distributed according to a normal distribution.

The issue, however, is that in our case G� N, and therefore W is underspecified: there

will be an infinite number of possible W ’s that result in zero residual. To get around this

issue, we will encode our prior assumption that only a small subset of genes are going to

have an effect on cancer cell morphology in the form of a sparsity penalty:

minimizeW ‖Y −XW‖2
F +λ ∑i card(‖wi‖1),

where λ ∈R is a hyperparameter, and the cardinality function card(x) is 0 when x = 0,

and 1 otherwise.

Unfortunately, the cardinality function is non-convex, which makes actually solving

the above optimization problem extremely difficult. In standard practice, one simply re-

places card(x) with ‖x‖1, which is its convex envolope over [−1,1]. This results in an

`1-minimization problem that is equivalent to a standard Lasso model (Tibshirani, 1996):

minimizeW ‖Y −XW‖2
F +λ ∑i ‖wi‖1.

This standard `1 model can be extended in two different ways, which we will cover

separately in the subsequent subsections.

2.4.1 Iteratively Reweighted `1 Minimization (IRLM)

One issue with the optimization problem above is that ‖x‖1 is at best a very crude ap-

proximation to card(x), chosen only because of its convexity. Instead, we can follow the

approach of (Candès et al., 2007), who proved in a landmark paper that one can often obtain

better solutions by using the function log(ε + |x|) to approximate card(x), and then running

concave-convex programming to obtain a series of reweighted `1-minimization problems,

each of which is easy to solve. This approach is described in detail in Algorithm 2.1.
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Algorithm 2.1 Original IRLM (based on Section 2.2 in (Candès et al., 2007))

1. Set the iteration count t = 0 and the sparsity penalty weights r(0)i = 1, i = 1, . . . ,n.

2. Solve the weighted `1 minimization problem

minimizeW (t)‖Y −XW (t)‖2
F +λ ri ∑

i
‖w(t)

i ‖1.

3. Update the penalty weights: for each i = 1, . . . ,n,

r(t+1)
i =

1

|w(t)
i |+ ε

.

4. Terminate on convergence or when t hits a max number of iterations. Otherwise,
increment t and go to step 2.

2.4.2 Elastic Net Regression

Another issue with the standard `1 minimization problem above is that if groups of genes

have highly correlated expression levels (which would occur, for example, among genes

along the same pathway), the optimization would tend to randomly select only one gene

from each group to use as a predictor. To get around this, (Zou and Hastie, 2005) introduce

elastic net regression, which introduces a small amount of ridge regression into the standard

`1 problem.

To simplify notation, we first note that our original optimization problem can be de-

composed into P independent subproblems, each one of which involves regressing against

a single morphological trait. Let w:, j be the vector corresponding to any particular trait j;

in the original problem, w:, j would be the j-th column of W . We can then write:

minimizew:, j ‖Y j−Xw:, j‖2
F +λ j‖w:, j‖1,

where we have split up the original single hyperparameter λ into separate hyperparam-

eters for each phenotype, for greater accuracy (because different phenotypes would have
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Figure 2.1: Example of an elastic net regularization path.

a different number of genes involved in predicting them). Note that the `1 norm on W is

invariant to whether we apply it to its columns instead of its rows.

Elastic net regression would then give us:

minimizew:, j ‖Yj−Xw:, j‖2
F +λ j

(1−α

2 ‖w:, j‖2
2 +α‖w:, j‖1

)
,

where the elastic net hyperparameter α ∈ [0,1] can be set to 0 to obtain the standard

ridge regression penalty, or 1 to obtain the standard lasso penalty.

Elastic net regression also has the computationally desirable property of being able to

set each λ j efficiently, because the magnitude of λ j is in monotonic correspondence with

the number of zero entries in w:, j. This allows us to calculate the full regularization path

for each λ j (i.e., finding cross-validation prediction error for all possible values of λ j),

as detailed in (Zou and Hastie, 2005). An example of this calculation, generated by the

software package glmnet (Friedman et al., 2010a), is shown in Fig. 2.1.



Chapter 3

Methods

We are now well-positioned to describe the methodology we adopted to 1) obtain accurate

morphological measurements from breast cancers, and 2) integrate these with molecular

data to find putative clinically-relevant genes that drive carcinogenesis.

3.1 Extracting Morphological Features

We developed an image processing pipeline to process digitized whole-slide breast tumor

samples, within the Definiens Developer XD image analysis environment. We faced two

challenges here: 1) typical images contain around 10 billion pixels, far too many to work

with directly, and 2) in order to produce a clinically-relevant set of higher-level features,

we have to reliably distinguish between epithelium and stroma, and nucleus and cytoplasm,

across all patients. This is complicated by the large degree of variation between patients

due not only to the intrinsic differences between patients in terms of age, race, etc., but also

to the fact that different patients were processed in different centers.

To address these issues, we performed the analysis at two different resolutions, which

allowed us to use an initial low-resolution pass to identify the relevant areas of each im-

age, before zooming in for more detail. Additionally, we use a large set of hand-labeled

slides to train an epithelium-stroma classifier, allowing us to build a robust classifier that

can automatically take into account variation between patients without the need for us to

explicitly hard-code a set of rules.

12
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Our pipeline comprises three main stages, which we describe in the following subsec-

tions.

3.1.1 Tissue Segmentation

The aim of the first stage is to segment the slide into small, contiguous, and visually coher-

ent sections called superpixels. This involves four steps:

1. Create a low-resolution map at a 0.5% scale and a medium-resolution map at a 3%

scale from the original image.

2. On the low-resolution map, create large superpixels and threshold these based on

their total green pixel intensity to find superpixels that contain a sufficient quantity

of tissue. Discard the other superpixels, i.e., the ones that are almost entirely white.

3. Synchronize the low-resolution and medium-resolution maps, i.e., discard portions

of the medium-resolution map that were discarded in the low-resolution map.

4. Segment the remainder of the medium-resolution map into small superpixels.

Figure 3.1 shows a graphical depiction of these steps.
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Figure 3.1: Pipeline for tissue segmentation.
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Figure 3.2: Left: Map of P(Epithelium), with white = probability 0. Right: Classified
tissue segments. Red = Epithelium, Purple = EMT, Green = Stroma, Yellow = Adipose.

3.1.2 Tissue Classification

In the second stage, we classify the superpixels found in the first stage into four clinically-

relevant categories: epithelium, stroma, epithelial-mesenchymal transition (EMT), and adi-

pose. This is accomplished through the following steps:

1. Within each superpixel, identify nuclei and cytoplasm based on color; we divide each

superpixel up into a fine grid, and apply a simple threshold on each grid square.

2. Label empty superpixels as adipose.

3. For each remaining superpixel, create a 150-dimensional feature vector, incorporat-

ing size, shape, texture, intensity, and other characteristics of intra-superpixel nuclei

and cytoplasm.

4. Use these feature vectors (together with the hand-labeled set of tumor slides) to train

a binary epithelium-stroma classifier. We use `1-regularized logistic regression, with

cross-validation to calculate regularization paths. (Friedman et al., 2009) The result

is a classifier that assigns to every superpixel a probability that it is epithelial. (Figure

3.2-Left)
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5. Classify superpixels with P(epithelium) ≥ 0.75 as epithelium, superpixels with

P(epithelium)≤ 0.25 as stroma, and the rest as EMT. (Figure 3.2-Right)

3.1.3 Feature Construction

The third and final stage involves calculating morphological features based on the tissue

categories computed in the preceding stage. For each patient, we generate 19 high-level

summary features from the corresponding tumor tissue slide, including:

1. Total area covered by epithelial tissues, and likewise for stroma, EMT, and adipose.

2. Total number of epithelial objects, and likewise for stroma, EMT, and adipose.

3. Total area covered by nuclei, and total area covered by cytoplasm.

4. Total number of nuclei, and total number of cytoplasmic objects.

5. Nuclei staining intensity and heterogeneity.

6. Degree of epithelial-ness, as measured by ∑s∈Superpixels P(s = epithelium) ∗
Size(s), normalized by the total tissue area.

These features are then concatenated into a single 19-dimensional vector, for use in the

subsequent regression analysis.

3.2 Gene-Morphology Regression

Recall from Section 2.4 that we can denote our gene expression data with a matrix

X ∈ RN×G, and our morphological data with a matrix Y ∈ RN×P. Our goal is to find a

matrix of regression coefficients W ∈ RG×P, such that if we only had access to the gene

expression data, the “predicted” morphological data XW would be as close to Y as possible.

By examining the entries of W , we could then find out which genes are significantly pre-

dictive of which morphological traits, and use that to inform further research and biological

validation.
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The dominant issue in any attempt to work with high-throughput molecular and molec-

ular data, however, is the unfortunate fact that N � G. It is difficult and costly to obtain

matching tumor tissue samples and gene expression data for patients suffering from cancer,

which in our case means that N is in the low hundreds. On the other hand, gene expres-

sion microarrays means that we have access to expression levels of approximately 20,000

genes. Compounding this issue is the problem of measurement noise; both morphological

and molecular measurements are extremely noisy and not very precise. For example, the

former depends on how representative the extracted tissue sample is of the entire tumor,

while the latter is an aggregate over many cells and typically exhibits a large degree of

variance in measurements, even among technical replicates. Together, these factors make

it difficult to robustly estimate W using straightforward techniques.

To overcome these obstacles, we develop a series of extensions to the regression tech-

niques outlined in Section 2.4.

3.2.1 Transfer Learning via IRLM

Our first observation is that morphological traits are highly interlinked - we would expect

that, for example, that related mechanisms underlie the size, shape, and texture of a cell.

In particular, this means we would expect genes that are strongly predictive of one mor-

phological trait to also be predictive of other morphological traits. Conversely, if a gene

is only predictive of a single morphological trait and is not correlated with any other, then

it is more likely that that single association is the result of statistical noise rather than true

signal. This can be viewed as a form of multi-task or transfer learning, where the coef-

ficients we learn for one morphological trait informs the coefficients we learn for another

morphological trait, and vice versa.

We can encode this with a group sparsity prior that acts on the elements of individual

rows Wi, encouraging them to go to zero together. One recent and popular method for do-

ing that is to use sparse group lasso, which amounts to adding a `2 penalty on the rows

Wi. (Friedman et al., 2010b) Unfortunately, this loses us the decomposability property de-

scribed in Section 3.2.2, because it couples together the individual subproblems (of finding
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genes that can effectively predict a single phenotype). This makes it computationally in-

feasible to run over large datasets comprising thousands of genes and morphological traits.

Moreover, as discussed in Section 2.4.1, the `1 and `2 penalties are not ideal approximations

of the cardinality function.

Instead of using the sparse group lasso, we can derive a multi-task regression algorithm

in the spirit of (Candès et al., 2007). The transfer learning problem can be stated as trying

to solve:

minimizeW ‖XW −Y‖2
F +λ ∑i card(‖Wi‖1) ,

where we now care about the cardinality of entire rows Wi, which corresponds to the vector

of coefficients for a single gene across all the morphological traits. As a reminder, in Sec-

tion 2.4, we were concerned about minimizing the cardinality of each individual element

of W . In the following discussion, we omit the hyperparameter λ for simplicity.

Now, as before, we can approximate this cardinality term with ∑
G
i=1 log(ε + ‖Wi‖1) =

∑
G
i=1 log(ε +∑

P
j=1 |Wi j|), which gives us:

minimizeW ‖XW −Y‖2
F +∑

G
i=1 log(ε +∑

P
j=1 |Wi j|).

Because log(·) is monotonic, we can introduce dummy variables Ui j to obtain an equiv-

alent optimization problem:

minimizeW,U ‖XW −Y‖2
F +∑

G
i=1 log(ε +∑

P
j=1Ui j)

|Wi j| ≤Ui j, ∀i, j .

The log term is unfortunately concave, but we can apply standard sequential convex

programming techniques to solve this efficiently. The idea is to solve a sequential set of

convex optimization problems, with each iteration guaranteed to produce solutions that are

better (or not worse) than the last, with respect to the original objective function. (Yuille

and Rangarajan, 2003; Sriperumbudur and Lanckriet, 2009) We first linearize this objective
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at a point Ũ to obtain:

minimizeW,U ‖XW −Y‖2
F +∑

G
i=1 log(ε +∑

P
j=1Ũi j) +

G

∑
i=1

P

∑
j=1

1
ε +∑

P
k=1Ũik

(Ui j−Ũi j)

|Wi j| ≤Ui j, ∀i, j .

and then remove constant terms, substitute W back for U , and simplify to get:

minimizeW ‖XW −Y‖2
F +

G

∑
i=1

1
ε +‖W̃i‖1

‖Wi‖1.

In this formulation, W̃ represents the weight matrix at the previous iteration (i.e., the

previous problem in the sequence of convex problems). This leads to the following algo-

rithm for approximating our original transfer learning task:

Algorithm 3.1 Multi-task IRLM

1. Set the iteration count t = 0 and the sparsity penalty weights r(0)i = 1, i = 1, . . . ,n.

2. Solve the weighted `1 minimization problem

minimizeW(t) ‖XW (t)−Y‖2
F +

G

∑
i=1

r(t)i ‖W
(t)
i ‖1.

3. Update the weights: for each i = 1, . . . ,n,

r(t+1)
i =

1

‖W (t)
i ‖1 + ε

.

This uses the sum of the absolute coefficients of each gene across all of the related
phenotypes to determine the new regularization weightage.

4. Terminate on convergence or when t hits a max number of iterations. Otherwise,
increment t and go to step 2.

This has the advantage that the subproblems are all decomposable (because the `1 norm

is decomposable), making the problem easily parallelizable in a Map-Reduce fashion: a
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typical run of the algorithm would involve solving all the subproblems (individual pheno-

types) separately, gathering the weights from all of them and recomputing the `1 weights,

and then solving all the subproblems separately again. In practice, this not only results

in significant speed-up over group lasso methods, but also allows us to tackle very large

datasets via distributed computing.

3.2.2 Elastic Net Regression

The decomposable-by-phenotypes property holds even when we introduce the elastic net

penalty from Section 3.2.2. Recall that elastic net regression involves solving problems of

the form:

minimizeW ‖Y −XW‖2
F +∑ j λ j

(1−α

2 ‖w:, j‖2
2 +α‖w:, j‖1

)
.

We can simply introduce this into step 2 of algorithm 3.1, using the parameters r(t)i

to weight the vectors w:, j accordingly. Our regression problem thus involves two distinct

forms of regularization: elastic net penalties over the columns of W to encourage correlated

genes to co-predict phenotypes, and reweighted `1 penalties on the rows of W to encour-

age group sparsity. As before, we use fast regularization path algorithms in combination

with 5-fold cross-validation on the vanilla elastic net problem described in Section 3.2.2 to

determine the hyperparameters λ j.

3.2.3 Pathway Regularization and Filtering

Furthermore, we can input some additional prior knowledge into our regression pipeline by

looking at sets of curated genetic pathways, such as the Biocarta or Reactome collections.

(Subramanian et al., 2005) For both statistical and computational reasons, we first reduce

the number of genes used as regressors by selecting only the top 20% of the available

genes, based on the variance in their expression levels across all the patients; the idea is that

genes with relatively constant expression levels will not be particularly helpful in predicting

morphological traits. Next, out of these genes, we only consider genes that belong to

at least one of the pathways in our curated set, the assumption being that genes that are
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biologically important in one way or another are more likely than not to have already been

at least cursorily studied (in a non-cancer setting), and placed into one of these curated

sets. We note that this is still a largely unbiased process, for the curated gene sets are large

and span many different areas of biological research: for example, the Biocarta collection

comprises 1267 genes over 217 pathways, while the Reactome collection comprises 4159

genes over 430 pathways. (BioCarta, 2012; Joshi-Tope et al., 2005)

With this reduced set of genes, we can extend the transfer learning system developed

above by incorporating regularization over the pathways in our collection of choice. The

intuition behind this is as follows: genes in the same pathway act together to bring about

phenotypical change, and therefore if a particular gene is strongly predictive of some aspect

of tumor morphology, it is likely that other genes in the same pathway also affect tumor

morphology. Concretely, we can encode this by simply replacing ‖W (t)
i ‖1 in step 3 of

algorithm 3.1 with 1
|Pathway(i)|∑ j∈Pathway(i) ‖W

(t)
j ‖, where Pathway(i) is the set of all

genes that are in the same pathway(s) as gene i; dividing by the total number of such genes

ensures that we do not over-penalize genes that belong to large pathways.

3.2.4 Regression with Active Genes

The estimates obtained by running the multi-task regression described in the preceding sec-

tions are biased towards 0, because of the nature of the `1 penalty. (Friedman et al., 2001)

We can therefore improve on these estimates by using multi-task regression to find the

sparse set of genetic predictors for each morphological trait, and then running unpenalized

least-squares regression using only these active genes. This is typically possible because

the number of active genes is almost always smaller than the number of patients (due to the

sparsity prior); if not, we add a small amount of ridge regression.
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3.2.5 Summary

We are finally in a position to assemble all the pieces:

Algorithm 3.2 Overall gene-morphology regression pipeline.
Input: Gene expression matrix X ∈ RN×G, morphological trait matrix Y ∈ RN×P.
Output: Matrix of regression coefficients W ∈ RG×P.
Procedure:

1. For each phenotype j, determine the regularization hyperparameter λ j by calculating
the regularization path for the appropriate single-task elastic net regression (using
5-fold cross-validation). (Section 3.2.2)

2. Run multi-task IRLM with pathway regularization to find the (biased) coefficient
matrix W̃ . (Sections 3.2.1, 3.2.3)

3. For each phenotype j, find the unbiased coefficient vector w:, j by running unpenal-
ized least-squares regression using only the genes with non-zero coefficients in w̃:, j.
(Section 3.2.4)

We can then examine W to realize our original goal of finding genes that are strongly

predictive of morphology.
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Results

4.1 Synthetic Data

We first tested out our multi-task IRLM algorithm on two synthetic datasets, each with 6

morphological phenotypes, 1000 genes and 100 patients. The gene expression values were

all drawn IID from a standard Gaussian distribution.

4.1.1 Dataset 1 - Single group of phenotypes

In the first dataset, we aimed to simulate a case of having a group of largely related phe-

notypes, each pair of phenotypes differing by only one gene. As such, for i = 1,2, . . .10,

we formed phenotype i by taking a linear combination of genes 1, . . . , i− 1, i+ 1, . . . ,10,

with coefficients drawn uniform from [−1,−0.3]
⋃
[0.3,1]. For example, phenotype 1 is a

linear combination of genes 2 to 10. Noise drawn from N(0,4) was added to each pheno-

type value. The idea is that our multi-task strategies should not force any given phenotype

to include genes that are strong predictors of other phenotypes, but which are not good

predictors of itself.

We measure the relative error on each phenotype by taking the ratio of the predicted

mean-squared test set error to the original mean-squared error (i.e., without using any gene

expression values as regressors), the latter being equal to the variance of the phenotype in

the test set. These are the results:

23
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Method \ Phenotype 1 2 3 4 5 6
Single-task Elastic Net 0.67 0.40 0.47 0.37 0.50 0.61

Single-task IRLM 0.71 0.48 0.36 0.38 0.53 0.59
Multi-task IRLM 0.32 0.30 0.23 0.26 0.33 0.38

Multi-task Group Lasso 2.87 3.11 6.19 5.14 2.99 4.39

Table 4.1: Relative test errors on Dataset 1

Group lasso did surprisingly badly; this is probably due to inadequate cross-validation

of the regularization coefficient. IRLM, on the other hand, is very robust to different values

of the regularization coefficient (a default setting of 1 works well). We see that single-

task elastic net / IRLM perform comparably, while multi-task IRLM does far better. As

desired, in the multi-task IRLM setting, gene 1 was not picked up as a significant predictor

of phenotype 1, even though it is involved in the other phenotypes, and likewise for the

other genes.

4.1.2 Dataset 2 - Two groups of phenotypes

In this dataset, phenotypes 1-3 were linear combinations of genes 1-10, while phenotypes 4-

6 were linear combinations of genes 11-20, with coefficients and noise drawn from the same

distributions as before. The aim of this dataset is to see if the multi-task methods would

be robust to very heterogenous groups of phenotypes, where one would expect transfer

learning to be largely inapplicable across groups (though still helpful within each group).

These are the results:

Method \ Phenotype 1 2 3 4 5 6
Single-task Elastic Net 0.29 0.70 0.53 0.30 0.84 0.32

Multi-task IRLM 0.22 0.27 0.38 0.29 0.39 0.27

Table 4.2: Relative test errors on Dataset 2

As before, single-task IRLM performed comparably to elastic net, and multi-task group

lasso did poorly; we omit these results from the table for brevity. In contrast, multi-task

IRLM was able to correctly partition the genes and phenotypes into two distinct sets, and

accurately infer their relationships.
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4.2 Tissue Microarrays: Netherlands Cancer Institute

We next ran our gene-morphology association pipeline on data from a cohort of 248 pa-

tients from the Netherlands Cancer Institute (NKI), using 6,642 tissue-microarray-derived

morphological features from (Beck et al., 2011) and clinical data and expression levels of

11,040 genes from (van de Vijver et al., 2002). To increase the saliency of our results, we

first use univariate Cox regression to pick out the 132 morphological features most strongly

associated with patient survival, and filter the genes by taking only the top 20% by variance.

We then ran 3 regression experiments: 1) using the entire variance-filtered gene list,

without any pathway-based filtering; 2) using the Reactome collection of pathways for

filtering and regularization; and 3) using the Biocarta collection of pathways. Each experi-

ment consists of the same 10 random splits of the 248 patients into a training cohort of 198

patients and a held-out test cohort of 50 patients. In each random split, we use our multi-

task IRLM method to obtain regression coefficients on the training set, and then measure

the relative error for each phenotype on the test set, as we did with synthetic data in the

previous section. For each phenotype, we then take the median relative error over the 10

random train/test splits.

As can be seen from the aggregated results in Figure 4.1, all 3 methods are able to

explain away a surprisingly large fraction of the variance in morphological phenotype. We

also performed a control experiment in which we permuted the order of the phenotypes in

the test dataset; as expected, we were unable to consistently explain any single phenotype

in this permuted dataset (median relative test set errors were all greater than 1).

4.2.1 Interpretation

Analysis of the estimated regression coefficients yielded striking results. Our experiments

with the Reactome and Biocarta collections of pathways yielded 37 putative genes which

were significantly associated with tumor morphology, including the following genes with

experimentally-validated roles in tumorigenesis:
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Figure 4.1: Median relative test set errors on the NKI dataset. To visualize these, we sort
the relative errors on each phenotype and plot them as a straight line. For example, the
graph above tells us that about 20 phenotypes are predicted with < 0.88 error by Reactome
genes. We omit phenotypes that have median errors > 1.

• Transforming Growth Factor Beta-3. TGF-β acts as a gateway gene in normal

cells, regulating the cell cycle by stopping at the G1 phase when the cell is not ready

to proliferate. In cancer cells, however, TGF-β is often mutated and loses its regula-

tory function, allowing the cell cycle to run unchecked. (Djonov et al., 1997; Elliott

and Blobe, 2005) In our experiments, TGF-β3 was associated with a whole host of

cytoplasmic and nuclear morphological features. In particular, lower levels of TGF-

β3 were consistently associated with larger cell sizes and higher levels of nuclear

staining intensity, which reflects an increased density of nuclear chromatin.

• Kirsten Rat Sarcoma Viral Oncogene Homolog. KRAS is a well-known onco-

gene that serves to activate signal transduction pathways involving growth factors

and other established oncogene products such as c-Raf. (Bos, 1989; Kranenburg,

2005) In our experiments, KRAS is consistently associated with the morphological

properties of the stromal matrix, with elevated KRAS levels contributing to increased

stromal morphological heterogeneity.
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• Fibroblast Growth Factor 18. FGFs are pleiotropic growth factors that stimulate

proliferation across a variety of tissues. FGF-18 in particular has been shown to

be active in a significant fraction of colorectal cancers(Shimokawa et al., 2003;
Hu et al., 1998). In our experiments, elevated FGF-18 levels are associated with a

large variety of changes in cytoplasmic morphology, including an increase in cellular

heterogeneity.

A full list of the top genes can be found in Appendix A.1, including many other known

or suspected oncogenes/tumor-suppressor genes, such as the mitotic checkpoint genes

CENPA and BUB1 (Kops et al., 2005), the GEF protein VAV3 (Lee et al., 2008), the an-

chor protein Akap9 (Ciampi et al., 2005), the progesterone receptor PGR (Horwitz and

McGuire, 1978), and DSG1 from the cadherin superfamily(Chidgey and Dawson, 2007). It

is interesting to note that many of these genes were discovered in a context other than breast

cancer (e.g., colon cancer for FGF18), and are currently not associated with breast cancer

in particular. The fact that they are implicated in other forms of cancer strongly suggest

that they are indeed molecular drivers of cancer morphology in the breast as well, and open

these genes up for further study in the context of breast carcinoma and its treatment.

4.2.2 Coefficient Stability

Because a large thrust of our effort is to find scientifically-plausible hypotheses between

gene function and particular aspects of cancer morphology, it is important that we not only

find associations between genes and morphology, but also ascribe a consistent directionality

to these interactions. We find that the directionality of our coefficients are stable to a very

large extent. For example, Figure 4.2 shows representative results on three different genes

against a morphometric quantization of cell shape.

4.3 Whole-slide Tissue: the Cancer Genome Atlas

Finally, we ran our entire image processing and analytic pipeline on image and molecular

data from 326 patients with breast carcinomas from the Cancer Genome Atlas. For each
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Figure 4.2: Regression coefficients for VAV3, FGF18, and TGFB3 against cell shape,
across 20 different train/test splits.

patient, we obtained a digitized whole-slide tumor tissue sample (originally used for pri-

mary diagnosis in the hospital), together with gene expression data on 17,580 genes. We

used the morphological feature extraction pipeline described in Section 3.1, together with a

epithelium-stroma training set of 365,000 hand-labeled superpixels from a set of 90 slides,

to derive a set of 19 morphological features for each patient.

As with the NKI dataset, we ran 3 regression experiments: 1) using the entire variance-

filtered gene list; 2) using Reactome pathways for filtering and regularization; and 3) doing

likewise with Biocarta pathways. Figure 4.3 shows the median relative test errors on 10

random splits of the 326 patients into a training cohort of 261 patients and a held-out test

cohort of 65 patients. We performed a similar control experiment in which we permuted

the order of the phenotypes in the test dataset. As before, we were unable to accurately

predict any single phenotype in this permuted dataset (median relative test set errors were

all greater than 1).
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Figure 4.3: Median relative test set errors on the TCGA dataset. To visualize these, we
sort the relative errors on each phenotype and plot them as a straight line. For example, the
graph above tells us that about 5 phenotypes are predicted with < 0.96 error by Reactome
genes. We omit phenotypes that have median errors > 1.

4.3.1 Interpretation

Together, the experiments with the Reactome and Biocarta pathways turned up a set of

21 putative morphology-driving genes (Appendix A.2). As with the NKI dataset, we find

many genes that have already been validated as, or are suspected to be, heavily involved

in cancer: KIT and FGF18 as in the NKI dataset, and more notably the well-known genes

BRCA2 (breast cancer 2 susceptibility protein) and EGFR (epidermal growth factor re-

ceptor). Mutations in BRCA2 have stunning correlations with early-onset breast cancer

(Wooster et al., 1995), while EGFR is a cell-surface receptor that mediates signal transduc-

tion pathways for growth and has been, unsurprisingly, linked to cancer. (Nicholson et al.,

2001)

Our experiments also show that elevated levels of early growth response factor 1

(EGR1) and leptin (LEP) are associated with an increase in the number of adipose ob-

jects in the tumor. This is highly consistent with the role of insulin-regulated EGR1 in

adipose differentiation and of leptin in energy metabolism; indeed, leptin and insulin are

the major adiposity signals in the human body. (Havel, 2000)
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Figure 4.4: Left: Normal cell line. Right: After expression of CDC6, showing a loss
of contact inhibition and a transition towards invasion and metastasis. Reproduced from
(Sideridou et al., 2011).

For brevity, instead of enumerating the list, we next focus on two of the more striking

associations found.

4.3.1.1 CDC6 affects epithelial-mesenchymal transition

Our experiments indicated that elevated expression levels of cell division control protein 6

homolog (CDC6) were consistently associated with an increase in the area of tissue classi-

fied as undergoing epithelial-mesenchymal transition (EMT). This is clinically important,

because EMT is a critical step of the transition from local invasion to metastasis; if we can

prevent EMT from occurring, we can therefore prevent metastasis.

EMT often results from a loss in contact inhibition between cells and a concurrent

transformation into a more spindle-like shape, which allows the normally-adhesive cancer

cells to slip out from the epithelial layer and into the circulation. Less than a year ago,

(Sideridou et al., 2011) produced a striking experimental demonstration of our finding,

by showing that expression of CDC6 repressed E-cadherin expression in epithelial cells,

allowing them to morph into more invasive variants. (Figure 4.4) This was an unexpected

finding, as CDC6 was previously thought to be predominantly involved in the regulation of

DNA replication.
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Figure 4.5: Kaplan-Meier plot comparing the survival of 2977 breast cancer patients with
low (black) and high (red) levels of CDC6 expression.

We further investigated this association by stratifying a cohort of 2,977 breast cancer

patients into two groups, based on whether they had CDC6 expression levels above or be-

low the median, and studying the corresponding Kaplan-Meier plots. (Györffy et al., 2010)

As shown in Figure 4.5, the observed survival stratification between these two groups is ex-

tremely significant (logrank p-value of 2.1× 10−13); patients with higher levels of CDC6

have a markedly worse prognosis, consistent with the hypothesis that CDC6 expression

gives rise to EMT and promotes metastasis, and is consequently bad for prognosis. (Beck

et al., 2011)
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Figure 4.6: Laminin (red) immunostaining in the stroma. Reproduced from (Shin et al.,
2011).

4.3.1.2 VIPR2 and LAMA2 are associated with epithelium-stroma proportions

The next set of experimental results involves two genes, the vasoactive intestinal polypep-

tide receptor 2 (VIPR2) and laminin, alpha 2 (LAMA2); our experiments show that ele-

vated levels of both of these genes translate into an increase in the proportion of stroma vs.

epithelium.

Laminin is an protein that is secreted in the extracellular space and extracellular matrix,

and forms a integral component of the basement membrane; see Figure 4.6 for a graphi-

cal depiction of the levels of laminin expression in the stroma. Our finding that laminin

is related to the proportion of stroma vs. epithelium is therefore a validation of our ex-

perimental methodology; indeed, laminin was recently found to play a key role in breast

cancer. (Spencer et al., 2011)

Our experimental findings regarding VIPR2, however, are unexpected. Indeed, VIPR2

is not even known to be expressed in the breast (Mosca et al., 2010), and it has only been

tenously linked to other cancers as a cell-surface marker on gastrointestinal tumor cells,

without much functional elucidation. (Virgolini et al., 1996) To corroborate our findings,
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Figure 4.7: Kaplan-Meier plot comparing the survival of 2977 breast cancer patients with
low (black) and high (red) levels of VIPR2 expression.

we repeat our survival analysis (as in the previous section) on the same cohort of 2,977

breast cancer patients, using VIPR2 expression as the basis for stratification. As shown in

Figure 4.7, patients with higher levels of VIPR2 expression have a significantly better prog-

nosis (logrank p-value of 2.9× 10−14) than those with lower levels of VIPR2 expression.

This is consistent with previous findings that higher stromal proportions signify better prog-

nosis in breast cancer (Beck et al., 2008), and strongly suggests that VIPR2 plays a more

important role in breast carcinogenesis than previously thought.



Chapter 5

Discussion and Future Directions

Our results show the viability of running a integrative analysis of morpho-molecular data.

In particular, we successfully re-discovered several known and experimentally-validated re-

lations between gene activity and tumor morphology, and uncovered other putative genetic

drivers that could lead to fruitful investigative follow-ups. These putative drivers include

not only genes that are known to be important in other (non-breast) cancers, e.g., FGF-18,

but also genes with suspected novel functions, such as VIPR2.

The recent discovery that CDC6 had a malignant and previously-unexpected function

in relation to tumor morphology and metastasis underscores the need for high-throughput,

unbiased studies that can leverage data modalities other than gene expression or mutation

data. In that vein, we believe that the work in this thesis is a step in the right direction.

What are some promising avenues for future work? The logical next step is to perform

in-vitro or in-vivo validations of the most promising gene-morphology associations that

we have generated in the context of breast cancer. Besides these, there are two large and

inviting areas of future work:

• Transfer learning across different cancer types. The Cancer Genome Atlas, from

which we obtained half of the data used in this work, currently contains data on

6,000+ patients across 20+ different cancer types, and is growing rapidly. While each

type - or sub-type - of cancer is bound to have some of its own unique mechanisms,

the underlying machinery behind carcinogenesis is likely to be largely similar. We

can use this to our advantage by jointly analyzing data from disparate cancer types,

34
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in the same way that we used multi-task learning to combine data from disparate

morphological traits, in order to paint a more complete picture of the biology of

cancer.

• Transfer learning across different data modalities. Besides gene expression data,

there is a plethora of complementary data sources available in the Cancer Genome

Atlas, from somatic mutation calls to microRNA transcription levels. Generalizing

the system we have developed in this thesis to handle these additional data modalities

is a topic of both algorithmic and clinical interest.

At the same time, there are several more technical ideas to pursue, for example:

• Data-driven phenotype grouping. The current multi-task setup presumes some sort

of inductive transfer across all of the separate tasks (morphological traits). While this

is a reasonable assumption to make in the context of breast cancer alone, it might be

overly restrictive, especially if we enrich our morphological feature set with, e.g.,

many tissue-specific features. A different approach is to assume that there is some

sort of latent structure within the tasks that we need to discover: for example, the

morphological features could be in reality divided into two different groups, one re-

lated to epithelium and one related to stroma, with little transfer learning occuring

across group boundaries. We have been exploring various techinques of automati-

cally learning this grouping from data, e.g., by performing unsupervised clustering

on the coefficient weights at each iteration in the multi-task IRLM.

• Performance-based phenotype regularization. We have been careful to restrict

our attention to a trusted set of morphological traits, e.g., by performing Cox re-

gression to pick the top survival-related morphological features in the NKI dataset,

or by laboriously obtaining a hand-labeled set of epithelial and stromal tissues to

train a robust classifier for the TCGA dataset. As with the previous point, this is

because our regressions are setup for transfer learning across all of the tasks; this

means that the addition of noisy morphological features can significantly impact the

estimates for other features. One possibility for circumventing this is to explore a
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performance-based regularization system, where the amount that a particular mor-

phological feature contributes towards shared learning is based on how well we can

predict that feature on a held-out validation set.

Regardless of the future directions that the work presented here takes, it is clear that we,

and cancer researchers in general, have only just begun to scratch the surface of integrative

analyses that span and synthesize disparate data modalities. We eagerly look forward to the

next wave of advances in cancer biology and therapy that we hope will fall into place, as

scientists puzzle out the explosion of data that has characterized the last decade of cancer

research.



Appendix A

List of Putative Genes Driving Cancer
Morphology

A.1 NKI Experiments

1. agt

2. Akap9

3. BIRC5

4. BUB1

5. C1QB

6. Cdc25b

7. CENPA

8. cfd

9. CPB2

10. DSG1

11. FGF18

12. FGG
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13. KIT

14. Kras

15. ldhb

16. pfkp

17. PGR

18. PLA2G7

19. SLC26A3

20. SLC40A1

21. Stat1

22. TGFB3

23. Vav3

A.2 TCGA Experiments

1. ADH1C

2. BRCA2

3. CDC6

4. CFD

5. CHRNA1

6. CKMT2

7. COL17A1

8. CPB2

9. EGFR

10. EGR1
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11. FGF18

12. GPLD1

13. KIT

14. LAMA2

15. LEP

16. NGFR

17. PPP1R1B

18. SYN2

19. TAC1

20. TLR7

21. VIPR2
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