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A pioneering work in the field of transfer learning

There's overlap between the source and target distribution, and we want
to resample to make the model generalizes better on target domain

One specific case when we break iid-ness
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Covariate Shift: Assume that the input space of the source domain and
the target domain are both X', and the output space are both ). The
marginal distribution of the source domain Ps(x) is different from the
marginal distribution of the target domain Pr(x), but the conditional
distribution of the two domains are the same

Ps # Pr
Ps(ylx) = Pr(ylx)
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@ Assume that x is labeled by the probability model Piyue(y|x) coming
from model space F = {P(y|x; 6)|0 € ©}

@ Use the dataset D = {x(), y()} to fit the probability model P(y|x;#)
as an estimate of the real probability model P(y|x).

© Use variants of maximum likelihood estimation to estimate
parameters:

0 = argmin Z log P(y(i)|x(i); 0)

As long as Piue(y|x) € F, and Ps(y|x) = P7(y|x), then regardless of
whether Ps and P are equal, we can use dataset from the source domain
to fit the real model
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If the model space we choose does not include the real model (Piye & F),
then we are actually using a misspecified model to evaluate on test set,

which leads to poor performance
@ No model misspecification: MLE works!

@ No covariate shift but we have model misspecification: We'll need to
enlarge model space F; Parameter estimation has nothing wrong

@ Both covariate shift and model misspecification: What this paper
discusses!

February 7, 2024
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If the model space we choose does not include the real model (Piye & F),
then we are actually using a misspecified model to evaluate on test set.
Since Ps # Pt and we only use labeled data from the source domain, the
performance of this model give by MLE in the target domain will become
very poor (particularly when Ps and Pt differ a lot). The paper considers
under the misspecified model and Ps # Pt case, how are we going to to
improve our parameter estimation method.

@ No model misspecification: MLE works!

@ No covariate shift but we have model misspecification: We'll need to
enlarge model space F; Parameter estimation has nothing wrong

@ Both covariate shift and model misspecification: What this paper
discusses!
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@ We have both covariate shift and model misspecification

@ Ps and Pt are known
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Why unweighted model is bad

For linear regression case, Ordinary Linear Regression is very bad if
distribution of source domain is different from target domain, but it
performs well if they are the same. We'll want to use Weighted Linear
Regression instead.

Fig. 1. Fitting of polynomial regression with degree d =1. (a) Samples (x;, y;) of size n=100 are generated
from g(y|x)qo(x) and plotted as circles, where the underlying true curve is indicated by the thin dotted line.
The solid line is obtained by OLS, and the dotted line is WLS with weight g;(x)/go(x). (b) Samples of
n =100 are generated from g(y|x)q1(x), and the regression line is obtained by OLS.
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If we have many samples from source, i.e. mg >> mr

So that the variance of ,, is minimal and we can ignore it

Pr(x)
Ps(x)

Ep.(—log P(y|x; 0)) = Ep.(— log P(y|x; 0))

i

L P a6 g PP -
lim —m—sgmlogp(y ’X ,9) = EPS(_ lOgP(y‘X' 9))

ms——+00 PS(X)

where the first one is by Radon—Nikodym theorem, and the second one is
by SLLN

Ao 1 s Pr(x) ()1.0).
9W—argm|n—m—szwlogP(y |x\"; 0)

In transfer learning, typically we have way many data from source domain

than target domain, so we typically choose w(x) = ﬁ;((;()) that is, A = 1.

This is one significant theoretical underpinning on why we do this.
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What if we don't have that man

Lemma 2. The expected loss is asymptotically expanded as
R 1 1
EM(l0ss1(0,)) = loss1(6%) + " {K‘E,']’bw + EH(KE]H;]GWH;I)} +o(n™h),

@1
where the elements of Ki and Ki?' are defined by

93}

and b,, is the asymptotic limit of nE(()")(@W — 0%), which is of order O(1).

Wy __p )™ log p(y}x,0)
(Kw )tl-nxk Eo{qo(x) 00 ... 00k

where 0 means source, 1 means target, and /oss means the difference
between true conditional P(y|x) and conditional model give by 6 assuming
distribution of x is with respect to source or target in KL divergence sense.
The first term is the goodness of the model (the small the better), and the
second term is the complexity of the model (also the small the better)
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What if we don’t have that many?

We don’t know P(y|x)!
This comes to the criterion, which is the main contribution of the paper.

Then, 1C,,/2n is an estimate of the expected loss unbiased up to O(n™') term:

EM(IC,/2n) = ES(loss; (D,,)) + o). (5.2)

When n (in fact it's the size of source domain ms) is large, the criterion is
sufficiently nice
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Main contribution

We adapt MLE to MWLE (where W for Weighted)

0, = arg min Z ))log P(y|x'; )

me .
B Pr(x1") ()i Pt
IC, = —2;mlog P(yWD|x":0,,) + 2Tr(J, A1)

JW:ES[P TG, log P(y|x: ), ® w(x)Volog P(y1x;6)| ]

)
),

Ps(x

H, = —Es [W(X)zvg
and we use plug-in estimators for fW and I:IW, which are consistent
estimators
0* is the 6 that attains ordinary MLE of P(y|x) (but not the true model
because of misspecification!) (note that S and T have the same P(y|x),

so there's no ambiguit
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Comparing with the following:

Akaike Information Criterion

AIC = —2log q(x|0) + 2k

Takeuchi Infomration Criterion

TIC = —2log q(x|0) + 2 Tr(J(6o) H(6o) 1)

J(0) = E, [Vg log q(X|0)’90 ® Vg log q(x|0)‘ ]

o
N

where p is the true model distribution, k is the number of parameters, g is
a specific candidate model distribution, 0y is the 6 that attains MLE wrt p,
and log q(x|6) is the logarithm maximum likelihood of the model

J(0) is the expected gradient of likelihood. H(0) is the expected negative
Hessian of likelihood.

H(0) = —E, [vg log q(x|0)
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Main contribution

When we have some candidate weight functions w(x) and the model space
F, we can calculate IC, using only the labeled data from source domain
and choose the w with minimal IC,. This paper predicates that

w(x) = (,P,;((;()) )*, A €[0,1], so choosing appropriate w(x) becomes
choosing appropriate .

This paper assumes Ps and Pt are known, which seems unrealistic, but
this paper assumes we can always use plug-in estimator give by the data to
have such empirical distribution.
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Fig. 2. (a) Curve of IC,, versus A€ [0,1] for the model of Section 2 with d =2. The weight function (5.3)
connecting from w(x) = 1 (i.e. A=0) to w(x)=q1(x)/go(x) (i.e. 2=1) was used. Also shown are —2L,(0,)
in dotted lines, and 2tr(J,,H,, ) in broken lines. (b) The regression curves for d =2. The WLS curve with
the optimal 7 as well as those for OLS (4=0) and WLS (1=1) are drawn.

Table 1
IC, values with weight (5.3) for A=0, A=1, and A=/ Also shown is / value. Calculated for the polynomial
regression cxample of Scction 2 with d = 0,...,4

d=0 d=1 d=2 d=3 d=4
A=0 138.72 174.02 63.59 28.97 3175
A=1 73.96 33.23 33.64 34.80 34.98
i=i 73.92 32.68 32.62 28.96 31.75
A 0.95 0.77 0.56 0.01 0.00

We know if there is no model misspecification, we just use non-weighted
regression model. If the class is less and less rich, we will be more heavy
on weighting.
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Experiments

Table 3
Asymptotic convergence of (5.2). 2n lossl(éw)+2L1(éw) is calculated for the Monte-Carlo replicates, and its

average is tabulated in the left columns. For n3>300, this agrees very well with the average of 2tr(J,.H " 1)
tabulated in the right columns. 2tr(J,H,, ') is shown in the n = oo row

n d=0 d=1 d=2
A=0 A=1 A=0 A=1 A=0 A=1

50 1.8 1.7 9.9 7.1 6.8 6.1 15.7 11.1 26.4 13.1 24.8 13.4
100 1.5 1.4 9.2 8.1 6.0 5.7 14.2 12.0 22.6 14.9 19.8 14.9
300 1.3 1.3 8.8 8.4 5.4 5.3 13.3 12.6 18.5 15.7 173 16.0

1000 1.2 1.2 8.7 8.6 5.1 5.1 13.1 12.9 16.2 15.4 16.7 16.3
00 1.2 8.6 5.0 13.0 14.9 16.4

This verifies is IC is indeed a good estimate of loss on target domain
asymptotically (verifies equation 5.2)
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Experiments

Table 4
The expected loss for the selected weight and the selected model. 27 times of lossl(éw) + Ei(logg(y|x))
is calculated for the replicates, and its average is tabulated in the columns of A =0,1 for d =0,1,2. The
average of the loss of the selected weight is shown in the columns of A. The right most columns show the

average of the loss of the selected model

By d=0 d=1 d=2 d

0 1 y) 0 1 y) 0 1 7 0 1 7
1.0 980 507 509 1238 123 119 717 160 167 732 150 153
05 960 61.1 611 499 90 82 256 118 115 269 11.0 108
02 1422 684 684 126 78 64 85 104 81 101 96 19
01 1528 71.1 710 60 78 57 59 104 72 63 96 69
00 1622 738 73.7 36 77 48 50 102 66 44 95 60

The selection criterion generally performs well in both correctly specified

case and blatantly misspecified case

Tom Tian, Siting Li

Reweighting data

February 7, 2024

17 /28



Switch gear to overparameterized setting of deep learning

network

Jonathon Byrd, Zachary C. Lipton (2018)
What is the Effect of Importance Weighting in Deep Learning?
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Switch gear to overparameterized setting of deep learning

network

In deep learning networks, many practical datasets are separable. What is
the effect of importance weighting?

What is the role of importance weighting for large over-parameterized deep
learning networks?

One thing: On an over-parameterized model, even if we have perfect
accuracy (100%) on the training set, we can still improve generalization
ability by continue training (obtain better performance on the test set)
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Theory

Linear model will converge to a solution with infinite norm for separable
data.

Lemma 1 Let w (t) be the iterates of gradient descent (eq. 2) withn < 28 1o % (X)) and
any starting point w(0). Under Assumptions I and 2, we have: (1) limy_,oo L (W (t)) =0(2)
limy—so0 ||W (2)|| = 00, and (3) Vn : im0 W (t)T Xp = O0.

Linear model will converge to the max-margin solution of svm for
separable data.
Theorem 3 For any dataset which is linearly separable (A iption 1), any [3 h decreasing

loss function (Assumption 2) with an exponential tail (Assumption 3), any stepsize n < 28 o5 (X))
and any starting point w(0), the gradient descent iterates (as in eq. 2) will behave as:

w(t) =Wlogt+p(t), 3)
where W is the Ly max margin vector (the solution to the hard margin SVM):
W= aLrgminHwH2 stowx, > 1, “)
weRd

and the residual grows at most as ||p (t)|| = O(log log(t)), and so

w (t) w
e Tw @~ 9]

Furthermore, for almost all data sets (all except measure zero), the residual p(t) is bounded.
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@ Implicit bias of SGD can explain why on an over-parameterized
model, even if we have perfect accuracy (100%) on the training set,
continued training can still improve generalization ability (obtain
better performance on the test set). This is because even if The
decision boundary has perfectly separated training data, if we
continue training, we can get a max-margin solution, which is better
than a random perfect accuracy classifier

@ For the overparameterized model, any data is separable (100%
accuracy on the train set). This means that overparameterized model
will converge to the max margin solution of svm

@ The max margin solution only depends on the position of the support

vector and has nothing to do with the relative weight between
samples, so importance weight doesn't affect convergent solution
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Empirical result

Importance Weight is effective in the early stages of training. For
over-parameterized models, this effect disappears with training. IW has no
effect on the the final converging solution

IW is still effective for under-parameterized models (depending on whether
training data is separable)

epoch 1 epoch 10 epoch 100 epoch 1000 epoch 10000
w # =3 7

7 7
e Z

Figure 1. Convergence of decision boundaries over epochs of training with different importance weights (top to bottom). Points are
colored according to their true labels, with background shading depicting the decision surface of an MLP with a single hidden layer of
size 64. The red line shows the logistic regression decision boundary. The dotted black line shows the max-margin separator.
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Empirical result

L2 norm regularization can partially reflect the change caused by IW,
because L2 norm prevents weights from having infinite norm, so under L2
regularization, the model cannot converge to the max margin solution, so
different IW will give different solution.

epoch 1 epoch 10 epoch 100 epoch 1000 epoch 10000

z

10:1 green:blue weight

1:1 green:blue weight

1:10 green:blue weight

Figure 2. Same scenario as Figure 1, except both logistic regression and MLP are trained with L2 regularization.
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In terms of language model

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, Percy Liang (2023)
Data Selection for Language Models via Importance Resampling
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In terms of language model

Given a large and diverse original dataset (e.g. The Pile) and a smaller
target dataset, we want to select a subset from the original data whose
distribution is similar to the target distribution. A

A natural approach is to resample the original data based on importance
weights (importance resampling), estimating importance weights on
high-dimensional data such as text is often hard.

1. Estimate
importance weights
using raw + target
data (simple bag-of-
ngrams estimator)

Importance
weight
estimator

Large raw dataset
(e.g., The Pile) 2. Select data via
importance
resampling
Subset of raw
data distributed
like target

Figure 1: Given a large raw dataset such as The Pile (Gao et al., 2020) and a smaller target dataset (e.g.,
Wikipedia + books), we aim to select a subset of the raw data that is distributed like the target in some
feature space. Our method, DSIR, first estimates importance weights using raw and target data in an
n-gram feature space. The importance weights are used to resample a subset of the raw dataset.
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In terms of language model

@ ldea: Map the original and target data to a certain feature space and
resample original data by the importance weights in this feature space

@ What is a feature space that is both computationally efficient and
captures aspects of pre-training data that are relevant to downstream
tasks?

@ Strong correlation between n-gram feature space and downstream
task performance

@ Computable by KL reduction, which measures how much the KL
divergence of the selected data to the target data is reduced
compared to random data in terms of n-gram feature space

KL(target||random) — KL(target||selected) J
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KL reduction

@ A strong correlation between KL reduction and the average
downstream performance of the eight downstream datasets

@ Easy to compute and predicts downstream accuracy without training

a language model

) =082 a * | ---- RoOBERTa baseline .
€835 x *  DSIR (n-gram generative)

3 DSIR (unigram generative)

‘E > ® Random selection

2 83.0 v X Manual curation (DAPT)

'GUJ A Top-k Heuristic classfication
= 825 1 v Heuristic classification

§ : DSIR (fasttext discriminative)
< » DSIR (n-gram discriminative)

0.00 0.05 0.10 0.15

Average KL reduction (KL(target || random) - KL(target || selected))

Figure 3: Plot of average KL reduction on the n-gram feature space, defined as how much the selected
dataset reduces KL divergence to the target distribution over just random sampling from The Pile,
against average downstream F1 score over the 8 continued pretraining datasets in Table 1. Thereis a
strong correlation between KL reduction and downstream performance (Pearson r =0.82).
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Distributionally Robust Optimization (Ben-Tal et al. 2013)

ERM: Orrm = aregergin E(m,y)mﬁ[€(93 (%, 9))]

The test distribution may be different from the training distribution.

We still hope that the model trained on training set performs well on the test set.

DRO Objective: mm{R(O) = sup Bz )~ @l6(0; (5’373!))]}-
€O QeQ
- Q: uncertainty set.
- Does it consider all kinds of distribution shift?

- Advantages over fine-tuning and domain adaptation
Sagawa et al. 2020. 2



How to define the uncertainty set Q?

- Considering all distributions is unrealistic since there is no free lunch.

- Here, the paper considers subpopulation shift: The test distribution should be
a subpopulation of the training distribution.

- Moreover, the subpopulation should not be far from the training distribution —
conditional value at risk (CVaR):

P = {py : apy(x) < p™(z) Val.

- Other definitions: using the f-divergence (Ben-Tal et al. 2013, Hu et al. 2018).

Oren et al. 2019, Rockafellar and Uryasev. 2000. 3



How to define the uncertainty set Q?

- However, such worst-case subpopulations are attained by adversarially
choosing the hardest, most unusual cases. (“Overly pessimistic”)

Training Data “Meaningful”

03 BB Review

5 02 . News Subpopulation?

ungrammatical
&~ sentence

A B C D E F

Sentences Prior KnOWInge
Sentence CVaR

Hu et al. 2018, Oren et al. 20194



Group DRO

Group DRO: Divide the data points x into groups (z), and use group as the
granularity for analysis:

P o= {p. : ap(2) < py*"(2) Yz}

sup E,.p, [Ew~px|z l(x; 9)]]
pze’Pza

Proposed in Hu et al. 2018, termed as “latent category”.

Obtain group information by clustering.

Use existing group information: domain label in WILDS.
Orenetal. 2019. °



Train Group DRO Models

Dynamically reweighting the loss for
different groups to ensure the “sup”?

Previous approaches for DRO (e.qg.

Lagrangian duality. (Duchi et al. 2018.),
Online algorithms (Namkoong and

Duchi. 2018.)) did not consider the group
structure.
Hu et al. 2018 considered two specific f-

divergences.

sup E,~p, []E$~px|z [ 9)]}

Pz EPZQ

= reviews
= news
= training

train ( X)

Px

=

me robust

Pe(x)

Oren et al. 2019. 6



New Approach of DRO

- Still formulate the problem as a two-player minimax game:

inf sup E,~p, [L(2;0)]
0 p,ePg

- At each iteration t, p_z is updated by selecting an optimal value with respect to
historical losses up to the current iteration:

pz(t) = argmax K, [i;(t)(zgg(lrt))]
p€P3

- The implementation is relatively easy.

Oren et al. 2019. 7



Is that all?

This paper considers the language modeling task, instead of classification!

Log loss can introduce imbalance between high-entropy groups and lower ones.

Hu et al.

Training Data

03 BEE Review
c 02 B News
B ungrammatical

»~ sentence
00
A 8 C D E G
Sentences
Topic CVaR with Log Loss Topic CVarR

03

0.2
0.1

0.0
A B C D E F A B C D E F

Sentences

2018 pointed out the importance of loss function too.

Oren et al. 2019.
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Modifying the Loss Term

New term!
- So they proposed another loss: /

Sup ]EZsz {]Ea:rvp”z [logpx|z (ZE | Z) o lngg(Zl?)]]
sz’PZO‘

- They compared the loss within the group, which really set the group as the
granularity of analysis.

- For estimating this new term, they use a simple bigram model for each group.
(“ensemble of weak teachers”)

Oren et al. 2019. 9



Results on the Mixture of {YELP, ONEBWORD}

Perplexity
w
oo

w
(@)
1

-@- MLE

=oe= MLE+Early stopping
-4 Topic CVaR, alpha=alpha*

@ Topic CvVaR+Oracle+Early stopping

0.4 0.6
Mixture weight (alpha*)

Oren et al. 2019.
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Transfer on the TRIPADV Hotel Review

Perplexity

ESY
(0 0]
1

ESy
(@)
1

H
I
1

SN
N
1

S
o
1

w
co
1

-@- MLE
== MLE+Early stopping

-¥= Topic CVaR, alpha=alpha*

-@® Topic CVaR+Oracle+Early stopping

0.2

0.4 0.6
Mixture weight (alpha*)

Oren et al. 2019.
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Summary

- Contributions in algorithm design:
(1) Extended the CVaR to a more realistic group version.
(2) Modified the loss term to adapt it to language modeling.

(3) Proposed a new algorithm to solve the Group DRO.

- Limitation: The two-player minimax game can be highly unstable during training,
and there is no convergence guarantee. (Like the Generative Adversarial
Network!)

Sagawa et al. 2020.12
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Problem Setting

- Group DRO for classification, but there is no restriction on alpha.

- They consider the generalization problem of overparameterized neural
networks, and groups may differ in generalization error.

fpro = arg min{fZ(O) = maxE_ . p [€(6;(z, y))]}
2ge 9€g R

Sagawa et al. 2020.14



Poor Generalization on Some Groups

Average Accuracy Worst-Group Accuracy
ERM DRO ERM DRO
gs 1A | 1000 | 1000 |
=
I R O 60.0 76.9
5 S Train 999 [ 1000 |
= CelebA
g3 M Test 41.1 41.1
- IR o 999 [ 990
Test 82.5 82.0 65.7 66.4

Sagawa et al. 2020.15



Method 1: Adding Strong Regularizers

Average Accuracy Worst-Group Accuracy

=2 ERM DRO ERM DRO
<

= . Train 3557

D]

& Waterbirds Test 346
[ .

Train 40.4

20

g CelebA e 37.8 86.7
7

%’f Waterbirds Trr‘:? ’;461(2)
a .

c‘% CelebA 2{:;? gg;
> :
s : Train .- 833
S| MuliNLU rese | 828 | 814 || 660 | 777

- Comparison with H. Shimodaira. 2000.: Misspecification is bad...?
Sagawa et al. 2020.16



Method 2: Group Adjustments
- Group-adjusted DRO estimator inspired by generalization theory:

~

0agj := argmin max {E(a:.y)~ﬁg (0; (z,y))] +
PO geG '

C
) 5
\/"—g} ©)

The scaling with 1/, /n, reflects how smaller groups are more prone to overfitting than larger groups,

Average Accuracy Worst-Group Accuracy

Naive Adjusted Naive Adjusted
Waterbirds 93.7 84.6 90.5
CelebA 86.7 87.8

Sagawa et al. 2020.17



Comparison with Importance weighting

B := areg min B, plwg €(6; (z,9))]
co

- Importance weighting and DRO can learn equivalent models in the convex
setting under some importance weights.
- But not necessarily equal when the models are non-convex.

- Counterexample provided in the paper.

18



New Approach of DRO

- This algorithm has convergence guarantee, and is more stable.

Algorithm 1: Online optimization algorithm for group DRO

Input: Step sizes 7),,1n¢: P, foreachg € G
Initialize (°) and ¢(*
ort=1;...; T do

7 /

g ~ Uniform(1,...,m) // Choose a group ¢ at random

TR o // Sample z,y from group g

g + ¢(t~V); Q<+ q,, exp(nL(0¢V); (x,y))) // Update weights for group g

¢ «— ¢/ Zg, y // Renormalize ¢

o)  9(t—1) _ 7}9q5(,t)V€(0(t_1); (z,y)) // Use q to update 6
end

Sagawa et al. 2020.1°



DoReMi: Optimizing Data Mixtures Speeds Up Language
Model Pretraining

Sang Michael Xie*1?, Hieu Pham!, Xuanyi Dongl, Nan Du!, Hanxiao Liu?, Yifeng Lu!,
Percy Liang?, Quoc V. Le!, Tengyu Ma?, and Adams Wei Yu!
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Pipeline
- Goal: Determine the weights for different sources (of Pile and GLAM).

- Using Oren et al. 2019’s framework with Sagawa et al. 2020’s optimizer to
obtain weights for different domains.

Wiki Step 1

Step 2 Step 3
Books .
News Train small proxy e e
Train small . language

Web model with DRO ¢

e — reference — —_— A model with
Code model o reweighted

weights
L dataset
Med
Reference domain Small reference Optimized domain weights Large language
weights model define reweighted dataset model

Small proxy model Xie et al. 2023.
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Figure 4: Per-domain log-perplexity of 8B models on The Pile. Despite downweighting some

domains, DoReMi improves log-perplexity on all domains.
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Discuss Questions

Improving predictive inference under covariate

shift by weighting the log-likelihood function:

The paper argues that if we don’t have
model misspecification, even if P_S and
P_T are different, as long as we have
P(y|x) are the same, the model can
generate accurate prediction. Does this
contradict to the distributional shift
argument we previously saw?

In the empirical experiment, sometimes
we see that the loss of weighted dataset
is greater than unweighted dataset, so
weighing is completely useless. What
might be the cause of this problem?

Distributionally Robust Language
Modeling:

What are the possible trade-offs
between worst-group accuracy
and other performance metrics of
the model?

Apart from assigning weights for
different domains, what are some
other possible advice from these
papers for LLM training?
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