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Background
- Previous work assumes way much more about what we can access for attacking
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- The attacker holds the training set or some data sample points from the same underlying distribution
- Try to capture the gradient in training assuming the model uses SGD algorithm

Nasr et al. (2019)



Background
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- Use so-called shadow models to simulate the behavior of our target model, 
which assumes known (or partially known) architecture of target model

- By nature it’s on classification task instead of regression Shokri et al. (2017)



Background

- LLM are overparameterized, so they have the ability to store all the training data

- Can we extract the training data from black box access to a specific LLM? 

- Although GPT-2 is open source, this paper only assumes black-box access 
to GPT-2
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- The training set of GPT-2 only contains dataset publicly available (source of 
training set is publicized)



- Generate many samples from GPT-2 when the model is conditioned on (potentially empty) 

prefixes

- Sort each generation according to one of six metrics and remove the duplicates

- Manually inspect 100 of the top-1000 generations for each metric

- Mark each generation as either memorized or not-memorized by manually searching online

- Confirm these findings by querying the original training data
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Main content

- Top-n: Low diversity; repeated

- Temperature; Internet

- Sorting: Perplexity, Small, Medium, zlib, Lowercase, Window
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- Among the 1800 data samples, a total of 604 data samples are actual 
training samples, with a total true positive rate of 33.5%

- The optimal attack strategy had a true positive rate of 67%
11



- Among the successfully extracted training data, 46 samples contained personal 
names (non-celebrities) and 32 contained some form of contact information
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Result

- Larger LM can memorize more training data
- Even if some data samples only exist in one document in the training data set, they can be 

memorized by the LM (k = 1 eidetic memorized)
- For the largest GPT-2, some samples only need to appear 33 times for memorization
- For LLM, any potentially sensitive information that is repeated many times has the risk of 

being memorized
13



Result

- ✓ if the corresponding URL was generated verbatim in the first 10,000 
generations. 

- ½ If the URL was generated by feeding GPT-2 the first 6 characters of the URL 
and then running a beam search

- This also reflects why small and medium selection metric is useful
14



Contribution and what’s missing

- A simple and effective method to extract verbatim sequences from a LM's 
training set using only black-box query access (Although they admit that 
using training data will cause more training data regurgitation)

- Extensive experiments were conducted on GPT-2
- Discussed a number of strategies to mitigate privacy leakages: differential 

privacy can guarantee privacy within a certain scope of application, but it 
results in longer training time and generally reduces performance.

- Didn't talk about on why what the paper did can generate training samples
- Why the last two data sampling strategies in the paper can increase the 

variation of text? 
- I would expect some fancier method for extracting data
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Does memorization happens on CV tasks? 
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Does memorization happens on production-level NLP 
models?  
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- A generative image model (such as Stable Diffusion) trained on a dataset that 
happens to contain a photo of this person will regenerate an almost identical 
image when asked to generate an image of that person's name as input
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- Diffusion model is based on variational inference, which optimizes the likelihood 
function and has a tendency to memorize data. 

- Compared to GANs, diffusion models remember more images in the data when 
generating at the same quality. Especially when there are many identical images in 
the data set, the diffusion model makes it easier to remember the data.
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- This problem also happens with productive-level model: GPT-3
- https://chat.openai.com/share/456d092b-fb4e-4979-bea1-76d8d904031f



Why this is significant
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- Previous attacks have recovered only a small portion of the model training data 
set, not the scale to this paper (Gigabytes)

- Previous attacks target at completely open source models, but this attack 
targeted for actual products. 

- The models that previous attacks target at didn’t align to make data extraction 
difficult, but ChatGPT did 

- Previous models give direct model access. ChatGPT does not provide direct 
input and output model access to the underlying LM



- When running the same attack on ChatGPT, it appears that the model never 
emits memorized data

- With appropriate hints (using the word repetition attack mentioned in the paper), 
its emitted memorized data about 150 times faster
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- Some words as prompt allows the model to emit training data much faster
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LLMs memorize their training data!
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Ziegler et al. 2021

Taken verbatim from code for a robotics class

https://github.com/jenevans33/CS8803-1/blob/eca1bbc27ca6f7355dbc806b2f95964b59381605/src/Final/ekfcode.py#L23

https://github.com/jenevans33/CS8803-1/blob/eca1bbc27ca6f7355dbc806b2f95964b59381605/src/Final/ekfcode.py#L23
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LLMs memorize their training data!

Carlini et al. 2020 identify 604 unique 
training examples in the generations 
of GPT-2 through their attack

Amounts to roughly 0.00000015% 
of the pre-training dataset

Ziegler et al. 2021 find 41 cases of 
“interesting” memorization upon 
analyzing 450k generations from 
GitHub copilot Image from Ziegler et al. 2021

A very loose lower bound on the amount of pre-training data memorized



RQ1: Can we get a better bound on 
fraction of the pre-training dataset that is 
memorized ?
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How to measure memorization?
Extractable memorization

• Given a model with a generation routine , an example  
from the training set  is extractably memorized if an 
adversary (without access to ) can construct a prompt  that 
makes the model produce  (i.e., ).

Gen x
𝕏

𝕏 p
x Gen(p) = x

Prior work on practical attacks use this definition Carlini et al. 2020 , 
Kandpal et al. 2022, Nasr et al. 2023
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• For a model  and an example  from the training set 
, we say that  is discoverably memorized if 

Gen [p ∥ x]
𝕏 x Gen(p) = x

This work: A measurement study to understand the worst case 
memorization

Knowledge of the 
prompt  comes 
from the training 

data

p

Discoverable memorization
How to measure memorization?

Training example x
Some prompt p

(p) = x
Memorized if



A more concrete definition for discoverable memorization

• A string  is extractable with  tokens of context from a 
model  if there exists a (length- ) string , such that the 
concatenation  is contained in the training data for  , 
and  produces  when prompted with  using greedy 
decoding.
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• A string  is extractable with  tokens of context from a 
model  if there exists a (length- ) string , such that the 
concatenation  is contained in the training data for  , 
and  produces  when prompted with  using greedy 
decoding.

x k
Gen k p

[p ∥ x] Gen
Gen x p

Only reasonable 
when  is 

not too small or  
too large

length(x)
k

This paper: 
 always 

and  for 
different values of 

length(x) = 50
k = l − 50

l ∈ {50,100,⋯,500}
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model  if there exists a (length- ) string , such that the 
concatenation  is contained in the training data for  , 
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decoding.
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Gen k p
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as this 

membership?

This paper: 
Exact match with 

the gold string 
 in the [p ∥ x]

How reasonable is this for a 
worst case bound?
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A more concrete definition for discoverable memorization

• A string  is extractable with  tokens of context from a 
model  if there exists a (length- ) string , such that the 
concatenation  is contained in the training data for  , 
and  produces  when prompted with  using greedy 
decoding.

s k
Gen k p

[p ∥ x] Gen
Gen x p

What about random 
sampling? maximize 
discoverability—an 
antithetical goal to 

maximizing linguistic 
novelty

Authors also find 
similar results 

with Beam Search.
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Experimental setup

1. “Randomly sample” data from the training dataset

2. Prompt the model with a prefix

3. Check if the suffix matches

4. Compute the average

50,000 examples

Use that as an estimate 
of the entire training 

corpus
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6B 
parameters
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RQ1: Can we get a better bound on 
fraction of the pre-training dataset that is 
memorized ? At least 1% for GPT-J



RQ2: How does memorization scale?
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Larger models memorize more

Carlini et al. 2020

10 cases of 
memorization to 0.5 
as model scale 
reduces

Prior work This work

GPT-2 as a baseline that was 
trained on a different pre-
training corpus.

Data Normalized by duplication counts and sequence lengths

Uniformly sampled data without any normalization

Log-linear 
relationship 
between model 
scale and 
memorization!
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Repeated data is memorized more!

Ziegler et al. 2021
Kandpal et al. 2022

Lee et al. 2021

Prior work
Gap between memorization 
across scales is reduced with 
increased duplication!
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Repeated data is memorized more!

• Data divided into buckets of 1000 
examples for each length 

• Each bucket consists of data repeated 
 to  times in the pre-training 

corpus
2n

4 2n + 1
4

This work

Across all model scales 
extractability increases 
with repetition
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Long context discovers more memorization*
This work

Data Normalized by duplication counts and sequence lengths Uniformly sampled data without any normalization

Remember that the provided context here comes from the pre-training corpus

Authors suggest that one way 
to avoid memorization 
attacks can be restricting 
the prompt length for API 
users
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Long context does not always discover more memorization*

Prior work

Ziegler et al. 2021

Remember me?

When the context is not 
necessarily from the pre-training 

data, shorter contexts often lead 
to higher regurgitations!
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Choice of decoding algorithm

This work

Beam
Greedy

Beam search slightly increases 
extractability

Sampling strategy that emit more likely 
sequences generate more training 

samples verbatim

Related work

Kandpal et al. 2022

Temperature SamplingTop-K Sampling
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Memorization in T5 trained using Masked LM

• Prefix and suffix not directly 
applicable for an MLM

• Definition of extractability: A 
sequence is memorized if the 
model perfectly solves MLM task 
(predict 15% masked tokens)

• Similar trends as Causal LMs, 
though fraction extracted is low

Might imply MLMs memorize less! 
PO: Experimental setups are 

different enough for the 
comparison to be appropriate



Some recent work : Scalable Extraction 
of Training Data from (Production) 
Language Models. Nasr et al. 2023
.
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Well no! This paper’s argument: Extraction attacks already make models 
regurgitate training data but prior work just couldn’t verify all cases

At least 1% of the 
dataset memorized 
in GPT-J, Carlini et al. 

2023

Discoverable

0.00001% of GPT-2’s data the 
dataset extracted using the 
attack in Carlini et al. 2020 

Extractable

Does this mean that even 
though LLMs memorize pre-
training data, we can’t really 
extract it practically?
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Bridging the gap between discoverable and extractable memorization

Magnitudes higher extracted 
data verified to be memorized! 
Compare to 600 examples in 
Carlini et al. 2020

• Carlini et al. 2020 verifies the 
memorized examples by querying 
over the internet

• Instead the authors find that when 
verified directly with the pre-
training corpora of the LM, the 
number is much higher!
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Bridging the gap between discoverable and extractable memorization

Estimating total memorization

• Number of extracted 
memorized examples depend 
on number of generations 
from the model

• We want to estimate total 
memorization, but couldn’t 
indefinitely keep on generating!

• Can use Good Turing estimator 
to extrapolate number of 
uniquely memorized examples

With sufficient data Good 
Turing estimator can help 
extrapolate the number of 
uniquely generated examples

As we query the model more, 
they emit more memorized 
data
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Extracting memorized data from instruction tuned LMs

Aligned models pose two issues that make using the existing attack 
methods for extracting memorized data

Challenge 1: Chat breaks the continuation interface.

Challenge 2: Alignment adds evasion.

Using the baseline attack, out of 
the 50 million generated tokens 

using their attack the authors only 
find 0.02% tokens to be present 

verbatim in their proxy pre-
training dataset
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Extracting memorized data from instruction tuned LMs

• Divergence Attack : Find a way to 
to cause the aligned “escape” out of 
its alignment training and fall back 
to its original language modeling 
objective 

• The authors find the following 
prompt to cause the divergence 
attack to succeed:

Using this attack, authors identify 
10,000 unique verbatim 

memorized training examples.



References

Carlini, Nicholas, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, et al. “Extracting 
Training Data from Large Language Models.” arXiv, June 15, 2020. https://doi.org/10.48550/arXiv.2012.07805. 

Albert Ziegler. GitHub Copilot: Parrot or crow? https://docs.github.com/en/github/copilot/researchrecitation, 2021. 

Kandpal, Nikhil, Eric Wallace, and Colin Raffel. “Deduplicating Training Data Mitigates Privacy Risks in Language Models.” arXiv, 
December 20, 2022. https://doi.org/10.48550/arXiv.2202.06539. 

Lee, Katherine, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, and Nicholas Carlini. 
“Deduplicating Training Data Makes Language Models Better.” arXiv, March 24, 2021. https://doi.org/10.48550/arXiv.2107.06499. 

Nasr, Milad, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A. Feder Cooper, Daphne Ippolito, Christopher A. Choquette-Choo, 
Eric Wallace, Florian Tramèr, and Katherine Lee. “Scalable Extraction of Training Data from (Production) Language Models.” arXiv, 
November 28, 2023. https://doi.org/10.48550/arXiv.2311.17035. 



Discussion Questions

Quantifying Memorization Across Neural Language Models

1. What other dataset properties other than repetition 
can lead to memorize? Are some texts easily 
memorized over the others? Similarly, what other 
factors related to training or the network 
architecture can contribute to memorization? 

2. Not all kinds of memorizations are necessarily a bad 
thing. What are such examples of useful and 
harmful cases of memorization? How can we detect 
the more concerning of such cases? 

3. Is exact match or a partial text overlap the best way 
to measure memorization? Can memorization 
manifest in more subtle ways that remain 
concerning but not detectable using surface level 
verification methods?

Extracting Training Data From Large Language Models

1. For small, medium, zlib, and lowercase metric, do we 
remove the data with lower metric value or higher metric 
value? Why these metrics make sense? 

2. Small and medium metric often finds text that appears less 
times. Why this is the case? 

3. What are other possible ways to for generating prompt? In 
particular, in the latest paper, they used same tokens to 
generate prompt. What can be a more efficient way to 
generate prompt for faster regurgitation? 

4. What is a possible mechanism behind the effectiveness of 
using a single word to repeat as prompt? This sounds like a 
strategy coming from nowhere unlike other paper? 

5. The paper combines several publicly available web-scale 
training sets into a 9TB dataset. By matching against this 
dataset, the paper confirms whether the recovered data is 
in the training set. Is this a reasonable action?




