Distribution Shifts

Medha Agarwal and Scott Geng

)z :‘. N )/ U e / o
-—\4‘.-»_\ S S “\ﬁ;‘j%’:» ~ - - _—
~ N - ~ e -‘Q : -

A friendly hsky in the WILDS



WILDS: A Benchmark of In-
the-Wild Distribution Shifts
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ML models often fail in the presence of
distribution shifts...

iWiId6COa_m: ResNet-50 Classifier Performance Across Distribution Shifts

50

Macro F1 Score
W N
o o

N
o
|

10

In Distribution Out of Distribution

[blame ChatGPT for squished text]



...and these failures can have severe real-
world ramifications.
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We hope to build models that can generalize
well across distribution shifts.



Q: What sorts of datasets have ML
researchers used to study this problem?
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[Arjovsky et al. 2019, Kim et al. 2019]



Q: What sorts of datasets have ML
researchers used to study this problem?
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[Hendrycks and Dietterich, 2019]



Q: What sorts of datasets — have ML
researchers used to study this problem?
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[Wang et al. 2019]



Q: What sorts of datasets have ML
researchers used to study this problem?

A: ML researchers have predominantly studied
datasets of artificial distribution shifts.

S

Synthetic transformations. Artificially disparate data splits.
1. Colored MNIST 1. ImageNet-Sketch
2. ImageNet-C 2. ImageNet-Rendition

3. Waterbirds 3. PACS
4. ... 4. ...



Train

Test (OOD)

d = Location 1 d = Location 2
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[Koh et al. 2021]
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Toxic Comment Text Male Female LGBTQ White Black ... Christian

O | applaud your father. He was a good man! 1 0 0 0 o ... 0
We need more like him.

O As a Christian, | will not be patronizing any of 0 0 0 0 o ... 1
those businesses.

0O  What do Black and LGBT people have to do 0 0 1 0 1 ... 0
with bicycle licensing?

0  Government agencies track down foreign 0 0 0 1 o .. 0

baddies and protect law-abiding white
citizens. How many shows does that
describe?

1 Maybe you should learn to write a coherent 0 0 0 0 o ... 0
sentence so we can understand WTF your
point is.

WIL® S

[Koh et al. 2021]



Q: With our new dataset, what can we learn?
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Domain adaptation approach: try to learn features
that are invariant across domains.
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Domain adaptation approach: try to self-train by
producing pseudo-labels for our unlabeled data.
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NoisyStudent intuition: very strong regularization allows us to avoid overfitting

to wrong pseudo-labels.

https://ai.stanford.edu/blog/understanding-self-training/

[Xie et al. 2019]



Domain adaptation approach: try to learn from
unlabeled data via a self-supervised objective.

Maximize agreement
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(a) Original

[Chen et al. 2020]



Baseline approach: ERM (+/- data augmentation

Test (OOD) Train

d = Location 246 d = Location 1 d = Location 2
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Vulturine African Bush
Guineafowl Elephant

Cow Cow

Just pretend like our unlabeled data doesn’t exist.



Q: With our new dataset, what can we learn?

IWILDCAM2020-WILDS

(Unlabeled extra, macro F1)
In-distribution  Out-of-distribution
ERM (-data aug) 46.7 (0.6) 30.6 (1.1)
ERM 47.0 (1.4) 32.2 (1.2)
CORAL 40.5 (1.4) 27.9 (0.4)
DANN 48.5 (2.8) 31.9 (1.4)
= Pseudo-Label 47.3 (0.4) 30.3 (0.4)
>O1A on ImageNet-C & FixMatch 46.3 (0.5) 31.0 (1.3)
B — Noisy Student 47.5 (0.9) 32.1 (0.7)
SwAV 47.3 (1.4) 29.0 (2.0)
ERM (fully-labeled) 54.6 (1.5) 44.0 (2.3)



Q: With our new dataset, what can we learn?

A: Existing domain adaptation methods basically
do not work™.

*they largely fail to significantly improve over an ERM baseline on the distribution shifts captured by WILDS.



Takeaway 1: As ML researchers, we should ground our
work in (or at least by cognizant of) real-world use.



Takeaway 2: The field of domain adaptation is
wide open!
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Distribution Shifts
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What is Domain?

Binary Classification Setting

Inputs X
Distribution on inputs D
Labeling function f: & - 10,1}
Domain (2,1)

When source domain # target domain, let
(Y, f,) = source domain and (<, f) = target domain.
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Two Questions in Domain Adaptation

Under what conditions can a

Given a small amount of labeled

target data, how should we combine
classifier which performs well on a
it during training with large amounts
source data be expected to perform
of labeled source data to achieve
well on the target data?
lowest target error at test time?



Quick Answers from the Paper

The authors bound a classifier’s

target domain error in terms of its
source domain error and a measure
of divergence between the source

& target domain.

Minimize a convex combination of

the empirical source and target
error. The coefficients depend on
the divergence between the domains

and the size of source & target data.



Related Work - Theoretical

Crammer et. al (2008) assume Xj, ..., Xy follow same distribution but the

deterministic labeling functions fi, ..., fy are different. They minimize (uniformly
weighted) source error.

Blitzer et. al (2008) give error bounds for the hypothesis learned by minimizing
weighted combination of source errors for the case of empirical risk
minimization.

Mansour et. al (2008) give theoretical analysis when the target is a mixture of
source domains.

Mansour et. al (2009) provide bounds on test error using a new discrepancy
distance and provide generalized bounds for regularization based algorithms.



Related Work - Applications

 Deep Transfer Networks - Long et. al (2014), (2015), (2016)



Related Work - Applications

 Deep Transfer Networks - Long et. al (2014), (2015), (2016)

* Multi-task Learning



Related Work - Modeling Technology

 Deep Transfer Networks - Long et. al (2014), (2015), (2016)
* Multi-task Learning

 Multiple source adaptation model



Related Work - Modeling Technology

 Deep Transfer Networks - Long et. al (2014), (2015), (2016)
* Multi-task Learning
 Multiple source adaptation model

* Adversarial Learning - Cao et. al (2018)



Model for Domain Adaptation

A hypothesis is a functionh : & — {0,1}.



Model for Domain Adaptation

A hypothesis is a function h : & — {0,1}.

» The probability according to distribution & ¢ that a hypothesis / disagrees
with labeling function fis

esn,f) = Exo [ | 1(X) = f(X) |1 = Py_o (h(X) # (X))




Model for Domain Adaptation

A hypothesis is a function h : & — {0,1}.

» The probability according to distribution & ¢ that a hypothesis / disagrees
with labeling function f'is

es(h,f) = Exg [1h(X) = fX) |1 = Py.g (h(X) # f(X))

» Risk of a hypothesis/source error: e((h) = €4(h, f,)



Model for Domain Adaptation

A hypothesis is a function 2 : & — {0,1}.

The probability according to distribution & ¢ that a hypothesis / disagrees
with labeling function f'is

es(n,f) = Exg [ 1H(X) = fX) ] = Py._q, (h(X) # fX)

Risk of a hypothesis/source error: €((h) = €4(h, f,)

Empirical source error €(h).



Model for Domain Adaptation

A hypothesisis a function : X — {0,1}.

» The probability according to distribution & ¢ that a hypothesis / disagrees with
labeling function f is

es(h, f) = Excp [ | R(X) = fX) |1 = Py, (h(X) # f(X))
» Risk of a hypothesis/source error: €,(h) = €¢(h, f)

» Empirical source error €(h).

» Parallel notation for e((, ), €;(h), and €4(h).



Answer 1

Establishing bounds on target domain performance
of a classifier trained on source domain



Some Definitions

The 7 -divergence

Given a domain 22 with two probability distributions & and &'.

Let # be a hypothesis class on 2, and
[(h={xeX :hx)=1}.

de(2D,2D") = 2 sup | Prg[I(h)] — PrgI(h)] |
heA



Some Definitions

Ideal Joint Hypothesis

h* = arg minleq(h) + e(h)]
he#

and

A = ei(h™) + e (h™)



Some Definitions

Ideal Joint Hypothesis

h* = arg min[eq(h) + e(h)]
heA

and

A = ei(h™) + e (h™)

When this ideal joint
hypothesis performs poorly,
we cannot expect to learn a

good target classifier by

minimizing source error.



Some Definitions

Symmetric Difference Hypothesis

Every hypothesis ¢ € ZZAH

For a hypothesis space #, the symmetric Is the set of disagreements
difference hypothesis between two hypotheses in
HAA ={g:g2(x)=hx)D h'(x)} for
some h,h' € A, Z .

Where @ is the XOR function

dyppg(D, D) =2 sup |Pry.glh(X) # h(X)] = Pry.g [M(X) # h(X)]]
hhW'eAx



Main Result

Theorem 2 Let 'H be a hypothesis space of VC dimension d. If Us, Ur are unlabeled sam-
ples of size m' each, drawn from Dg and Dt respectively, then for any § € (0, 1), with
probability at least 1 — 0 (over the choice of the samples), for every h € 'H:

1 ~
er(h) < es(h) 2dHAH(US,UT)

m/

) \/ 2d log(2m’) + log(%)




Main Result

Theorem 2 Let 'H be a hypothesis space of VC dimension d. If Us, Ur are unlabeled sam-
ples of size m' each, drawn from Dg and Dt respectively, then for any § € (0, 1), with
probability at least 1 — 6 (over the choice of the samples), for every h € 'H:

2d log(2m’) + log(%) L

1 ~
er(h) <eg(h) + EdHAH (Us, UT) + 4\/

m/

When A is small, domain adaptation is relevant => source error and unlabeled ZA#
-divergence are important for bounding target error.



Answer 2

A learning bound combining source and target data



Setup

» Sample § = (S¢, S7) of m instances.

» S consists of fm i.i.d. samples from 9.

» S consists of (1 — f)m i.i.d. samples from Y.
» Goal: find a hypothesis /4 that minimizes e(h).

» When [ is small, minimizing empirical target error is not feasible.

» Consider minimizing: ¢ (h) := aé(h) + (1 — a)éy(h)



Main Result

Theorem 3 Let H be a hypothesis space of VC dimension d. Let Us and Uy be unlabeled
samples of size m' each, drawn from Dg and Dr respectively. Let S be a labeled sample of
size m generated by drawing Bm points from Dy and (1 — B)m points from Dg and labeling
them according to fg and fr, respectively. If h € H is the empirical minimizer of €,(h)
on S and h; = min,cy €7 (h) is the target error minimizer, then for any 6 € (0, 1), with
probability at least 1 — & (over the choice of the samples),

2 )2 8
eT<i2>seT<h>;>+4\/ LB el \/ 2dlog(2(m + 1)) + 2log(3)

p 1 —p m
/ 3
2(1 — a)(%ﬁﬁm(u& L) 4\/2‘1 log(2m’) + log(5) x).

m/




Observations

 When a = 0 (ignore target data) and @ = 1(ignore source data) the bound
coincides with known bounds on target error.

e Choosing a € (0,1) optimally allows us to tradeoff “small” amounts of
“*good” vs “large” amounts of “less relevant” source data.



Optimal Mixing

| mTZDz

"y, g 1) = {min{l, v} myp < D?,

mr

m
Y = (1 | > )
mr +— ms \/Dz(mg —I—mT) — msmr

D =1/d/A where

, 4
2d log(2m’) + log(3) I A)

m/

1 ~
A= (idHAH(Z/{Sa Ur) + 4\/



Optimal Mixing lllustration
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Thank you!
Question?
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Bonus
Combining Data from Multiple Sources



Combining Data from Multiple Sources

o Source data comes from /N distinct sources.

« Each source S] has distribution QZJ- over inputs and labeling function ]j

 Out of total m source samples, ﬂ]m are from source S]

 Minimizing convex combination of training error from different source using
domain weights a = (ay, ..., ay),

Zae(h) Z RONLORO]

xES




A bound using pairwise divergence

for any ¢ € (0, 1), with probability at least 1 — 6,

N

2m

er(h) < er(hy) +2 (Z “_3) (d log(2m) — log(d)
= 5
\ J

j=1
N

+ Z(xj (2Aj + dyan (D, DT)) ,
j=1

where A; = mingcp{er(h) +€;(h)}.

)




A bound using combined divergence

forany 6 € (0, 1), with probability at least 1 — 4,

N

. * o’ \ (dlog(2m) —log(s)
o<ty v | (S37) (A0 0)

j=1

+ 2Vy + dran(Dy, D7),

where y, = miny{er (h) + € (h)} = miny{er (h) + Y_"_ o€ (h)}.




