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ML models often fail in the presence of 
distribution shifts…

[blame ChatGPT for squished text]



…and these failures can have severe real-
world ramifications.

>---<



We hope to build models that can generalize 
well across distribution shifts.



Q: What sorts of ✨datasets✨ have ML 
researchers used to study this problem?

[Arjovsky et al. 2019, Kim et al. 2019]

Train

Test

Colored MNIST



Q: What sorts of ✨datasets✨ have ML 
researchers used to study this problem?

[Hendrycks and Dietterich, 2019]

ImageNet-C



Q: What sorts of ✨datasets✨ have ML 
researchers used to study this problem?

[Wang et al. 2019]

ImageNet-Sketch



Q: What sorts of ✨datasets✨ have ML 
researchers used to study this problem?

A: ML researchers have predominantly studied 
datasets of artificial distribution shifts.

Synthetic transformations. 

1. Colored MNIST 
2. ImageNet-C 
3. Waterbirds 
4. …… 

Artificially disparate data splits. 

1. ImageNet-Sketch 
2. ImageNet-Rendition 
3. PACS 
4. …… 



[Koh et al. 2021]



[Koh et al. 2021]



[Koh et al. 2021]



Q: With our new dataset, what can we learn?

v2

???

???

Additional unlabeled examples 
(possibly from test distribution)

[Koh et al. 2021]



Domain adaptation approach: try to learn features 
that are invariant across domains.

DANN: I want my learned features to achieve low classification loss on my 
labeled data and have high domain identification loss across all data.

[Ganin et al. 2015]



Domain adaptation approach: try to self-train by 
producing pseudo-labels for our unlabeled data.

NoisyStudent intuition: very strong regularization allows us to avoid overfitting 
to wrong pseudo-labels.

[Xie et al. 2019]https://ai.stanford.edu/blog/understanding-self-training/ 



Domain adaptation approach: try to learn from 
unlabeled data via a self-supervised objective.

[Chen et al. 2020]



Baseline approach: ERM (+/- data augmentation)

???

???

Just pretend like our unlabeled data doesn’t exist.



Q: With our new dataset, what can we learn?

SOTA on ImageNet-C 🤯 



Q: With our new dataset, what can we learn?

A: Existing domain adaptation methods basically 
do not work*.

*they largely fail to significantly improve over an ERM baseline on the distribution shifts captured by WILDS.



Takeaway 1: As ML researchers, we should ground our 
work in (or at least by cognizant of) real-world use.



Takeaway 2: The field of domain adaptation is 
wide open!
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Distribution Shifts
Source Domain  Target Domain≠

Image credits: Koh, Pang Wei, et al. (2021)



What is Domain?
Binary Classification Setting

When source domain  target domain, let  
 = source domain and  = target domain.

≠
(𝒟S, fs) (𝒟T, fT)

Inputs

Distribution on inputs

Labeling function

Domain

𝒳

𝒟

f : 𝒳 → {0,1}

(𝒟, f )



{(Xi, yi)}
m1
i=1 {(Xi, yi)}

m2
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mN
i=1…
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mT
i=1

(𝒟T, fT)
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m2
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{Xi}
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(𝒟T, fT)

TRAIN DATA TEST DATA

TRAIN DATA TEST DATA



Question 2Question 1

Two Questions in Domain Adaptation

Under what conditions can a 
classifier which performs well on a 

source data be expected to perform 
well on the target data?

Given a small amount of labeled 
target data, how should we combine 
it during training with large amounts 

of labeled source data to achieve 
lowest target error at test time?



Answer 2Answer 1

Quick Answers from the Paper

The authors bound a classifier’s 
target domain error in terms of its 

source domain error and a measure 

of divergence between the source 

& target domain.

Minimize a convex combination of 

the empirical source and target 

error. The coefficients depend on 
the divergence between the domains 
and the size of source & target data.



Related Work - Theoretical

• Crammer et. al (2008) assume  follow same distribution but the 
deterministic labeling functions  are different. They minimize (uniformly 
weighted) source error.


• Blitzer et. al (2008) give error bounds for the hypothesis learned by minimizing 
weighted combination of source errors for the case of empirical risk 
minimization.


• Mansour et. al (2008) give theoretical analysis when the target is a mixture of 
source domains.


• Mansour et. al (2009) provide bounds on test error using a new discrepancy 
distance and provide generalized bounds for regularization based algorithms.

X1, …, XN
f1, …, fN



Related Work - Applications

• Deep Transfer Networks - Long et. al (2014), (2015), (2016)




Related Work - Applications

• Deep Transfer Networks - Long et. al (2014), (2015), (2016)


• Multi-task Learning




Related Work - Modeling Technology

• Deep Transfer Networks - Long et. al (2014), (2015), (2016)


• Multi-task Learning


• Multiple source adaptation model




Related Work - Modeling Technology

• Deep Transfer Networks - Long et. al (2014), (2015), (2016)


• Multi-task Learning


• Multiple source adaptation model


• Adversarial Learning - Cao et. al (2018)




Model for Domain Adaptation

• A hypothesis is a function .h : 𝒳 → {0,1}



Model for Domain Adaptation

• A hypothesis is a function .


• The probability according to distribution  that a hypothesis  disagrees 
with labeling function  is

h : 𝒳 → {0,1}

𝒟S h
f

ϵS(h, f ) = 𝔼X∼𝒟S
[ |h(X) − f(X) | ] = ℙX∼𝒟S

(h(X) ≠ f(X))



Model for Domain Adaptation

• A hypothesis is a function .


• The probability according to distribution  that a hypothesis  disagrees 
with labeling function  is


• Risk of a hypothesis/source error: 

h : 𝒳 → {0,1}

𝒟S h
f

ϵS(h) = ϵS(h, fs)

ϵS(h, f ) = 𝔼X∼𝒟S
[ |h(X) − f(X) | ] = ℙX∼𝒟S

(h(X) ≠ f(X))



Model for Domain Adaptation

• A hypothesis is a function .


• The probability according to distribution  that a hypothesis  disagrees 
with labeling function  is


• Risk of a hypothesis/source error: 


• Empirical source error .

h : 𝒳 → {0,1}

𝒟S h
f

ϵS(h) = ϵS(h, fs)

̂ϵS(h)

ϵS(h, f ) = 𝔼X∼𝒟S
[ |h(X) − f(X) | ] = ℙX∼𝒟S

(h(X) ≠ f(X))



Model for Domain Adaptation

• A hypothesis is a function .


• The probability according to distribution  that a hypothesis  disagrees with 
labeling function  is


• Risk of a hypothesis/source error: 


• Empirical source error .


• Parallel notation for .

h : 𝒳 → {0,1}

𝒟S h
f

ϵS(h) = ϵS(h, fs)

̂ϵS(h)

ϵS(h, f ), ϵT(h), and  ̂ϵT(h)

ϵS(h, f ) = 𝔼X∼𝒟S
[ |h(X) − f(X) | ] = ℙX∼𝒟S

(h(X) ≠ f(X))



Answer 1
Establishing bounds on target domain performance  
of a classifier trained on source domain



Some Definitions

The -divergence 

Given a domain  with two probability distributions  and . 
Let  be a hypothesis class on , and 

. 

ℋ

𝒳 𝒟 𝒟′￼

ℋ 𝒳
I(h) = {x ∈ 𝒳 : h(x) = 1}

dℋ(𝒟, 𝒟′￼) = 2 sup
h∈ℋ

|Pr𝒟[I(h)] − Pr𝒟′￼
[I(h)] |



Some Definitions

Ideal Joint Hypothesis 

 

and 

h * = arg min
h∈ℋ

[ϵS(h) + ϵT(h)]

λ = ϵS(h*) + ϵT(h*)



Some Definitions

Ideal Joint Hypothesis 

 

and 

h * = arg min
h∈ℋ

[ϵS(h) + ϵT(h)]

λ = ϵS(h*) + ϵT(h*)

When this ideal joint 

hypothesis performs poorly, 

we cannot expect to learn a 

good target classifier by 

minimizing source error.



Some Definitions
Symmetric Difference Hypothesis 

For a hypothesis space , the symmetric 
difference hypothesis 

 for 
some , 

Where  is the XOR function 

ℋ

ℋΔℋ = {g : g(x) = h(x) ⊕ h′￼(x)}
h, h′￼ ∈ ℋ

⊕

Every hypothesis  

is the set of disagreements 

between two hypotheses in 

. 

g ∈ ℋΔℋ

ℋ

dℋΔℋ(𝒟, 𝒟′￼) = 2 sup
h,h′￼∈ℋ

|PrX∼𝒟S[h(X) ≠ h′￼(X)] − PrX∼𝒟T[h(X) ≠ h′￼(X)] |



Main Result



Main Result

When  is small, domain adaptation is relevant => source error and unlabeled 
-divergence are important for bounding target error.

λ ℋΔℋ



Answer 2
A learning bound combining source and target data



Setup

• Sample  of  instances.


•  consists of  i.i.d. samples from .


•  consists of  i.i.d. samples from .


• Goal: find a hypothesis  that minimizes .


• When  is small, minimizing empirical target error is not feasible.


• Consider minimizing: 

S = (SS, ST) m

ST βm 𝒟T

SS (1 − β)m 𝒟S

h ϵT(h)

β

̂ϵα(h) := α ̂ϵT(h) + (1 − α) ̂ϵS(h)



Main Result



Observations

• When  (ignore target data) and (ignore source data) the bound 
coincides with known bounds on target error.


• Choosing  optimally allows us to tradeoff “small” amounts of 
“good” vs “large” amounts of “less relevant” source data.

α = 0 α = 1

α ∈ (0,1)



Optimal Mixing

D = d /A where



Optimal Mixing Illustration



Thank you!  
Question?
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Bonus 
Combining Data from Multiple Sources



Combining Data from Multiple Sources

• Source data comes from  distinct sources.


• Each source  has distribution  over inputs and labeling function .


• Out of total  source samples,  are from source .


• Minimizing convex combination of training error from different source using 
domain weights ,

N

Sj 𝒟j fj

m βjm Sj

α = (α1, …, αN)

̂ϵα(h) =
N

∑
j=1

αj ̂ϵj(h) =
N

∑
j=1

αj

βjm ∑
x∈Sj

|h(x) − fj(x) |



A bound using pairwise divergence



A bound using combined divergence


