Retrieval-based Language Models: An Alternative LM Paradigm

Rulin Shao

CSE599J

Feb. 16, 2023

Retrieval-based language models (LMs) **Retrieval-based LMs = Retrieval + LMs**

• It is a language model $P(x_n | x_1, x_2, \dots, x_{n-1})$

It retrieves from an external datastore (at least during inference time)

Datastore

Toronto 0.52 Ottawa 0.31 Vancouver 0.13 The capital city of Ontario is _____ Montreal 0.03 Calgary 0.01 (can be broadly extended to masked language models or encoder-decoder models)

(Also referred to semiparametric and non-parametric models)

ACL tutorial: https://acl2023-retrieval-lm.github.io/

Motivation

Why retrieval-based LMs?

Better at long-tail concepts & facts

Can grow & update w/o additional training

Provide data attribution

* Slide credit to Sewon Min

Rarities of concepts/facts

Why retrieval-based LMs?

Provide data attribution

What is Kathy Saltzman's occupation?

GPT-3 davinci-003: 20%-30% accuracy

* Slide credit to Sewon Min

Why retrieval-based LMs? Can grow & update w/o additional training Better at long-tail Provide data attribution

PRESIDENTIAL 2024

concepts & facts

Is United Kingdom a member of European Union?

Twitter / CEO

Linda Yaccarino

Jun 5, 2023-

facebook

Meta

Often Unpredictable!

* Slide credit to Sewon Min

Why retrieval-based LMs?

Better at long-tail concepts & facts

Can grow & update w/o additional training

List 5 important papers authored by Geoffrey Hinton

Geoffrey Hinton is a renowned computer scientist ... Here are five important papers authored by him:

1. "Learning Internal Representations by Error Propagation" (with D. E. Rumelhart and R. J. Williams) - This paper, published in 1986, ..

2. "Deep Boltzmann Machines" (with R. Salakhutdinov) - Published in 2009, ...

3. "Deep Learning" (with Y. Bengio and A. Courville) - Published as a book in 2016, ...

4. "Attention Is All You Need" (with V. Vaswani, N. Shazeer, et al.) - Published in 2017, this paper introduced the Transformer model,...

Provide data attribution

* Slide credit to Sewon Min

Model Architecture

Model Design Considerations

What to retrieve?

Text chunks (passages)? Tokens? Something else?

How to use retrieval? When to retrieve?

ACL tutorial: https://acl2023-retrieval-lm.github.io/

Model Design — Retrieve-in-context (RiC) LM Using the retrieval results as a context

Ram et al. 2023. "In-Context Retrieval-Augmented Language Models" Shi et al. 2023. "REPLUG: Retrieval-Augmented Black-Box Language Models"

Model Design — kNN-LM Using the retriever itself as a LM — kNN-LM (Khandelwal et al. 2020)

Training Contexts	Targets v_i	Representations $k_i = f(c_i)$	Dis di
Obama was senator for Barack is married to Obama was born in Obama is a native of	Illinois Michelle Hawaii Hawaii		

Test Context	Target	Representation	
x		q = f(x)	
Obama's birthplace is	?		

 $P_{k\text{NN}-\text{LM}}(y \mid x) = (1 - \lambda)P_{\text{LM}}(y \mid x) + \lambda P_{k\text{NN}}(y \mid x)$

Model Design – RETRO

Feed the retrieval augmentation through cross-attention.

Borgeaud et al. 2022. "Improving language models by retrieving from trillions of tokens"

Roadmap

Wu et al. 2022, Bertsch et al. 2023, Rubin & Brent, 2023

ACL tutorial: https://acl2023-retrieval-lm.github.io/

For more information

ACL 2023 Tutorial: **Retrieval-based Language Models and Applications**

Akari Asai¹,

Zexuan Zhong², Sewon Min¹, Danqi Chen²

¹University of Washington, ²Princeton University

ACL tutorial: https://acl2023-retrieval-lm.github.io/

Atlas: Few-shot Learning with **Retrieval Augmented Language Models**

Gautier Izacard^{*, ♦, ♣, ♡} Patrick Lewis^{*,} Maria Lomeli[♦] Lucas Hosseini[♦] Fabio Petroni Timo Schick Jane Dwivedi-Yu^{\lambda} Armand Joulin[♦] Sebastian Riedel $^{\diamond, \bigstar}$ Edouard Grave [◊] Meta AI Research, [♣] ENS, PSL University, [♡] Inria, [♠] University College London

few-shot learning and sample efficiency.

gizacard@fb.com plewis@fb.com marialomeli@fb.com hoss@fb.com fabiopetroni@fb.com schick@fb.com janeyu@fb.com ajoulin@fb.com sriedel@fb.com egrave@fb.com

• How to design and train retrieval-augmented language models, with a focus on downstream

Few-shot Downstream Learning

intensive ones.

Masked Language Modelling: Bermuda Triangle is in the *<MASK> of the Atlantic Ocean.*

Pretraining

Few-shot

Fact checking: Bermuda Triangle is in the western part of the Himalayas.

Question answering: Where is the Bermuda Triangle?

•••

Izacard et al. 2022, "Atlas: Few-shot Learning with Retrieval Augmented Language Models"

• The task of learning from very few examples. Specifically, Atlas picks knowledge-

Few-shot Downstream Learning

RIC Setting in Atlas

- Retriever: Contriever (unsupervised pretrained)
- Language model: T₅ unsupervised pretrained model
- Pretraining & datastore data:
 - Dec. 20, 2021 Wikipedia dump (only this for ablation study)
 - 2020-10 common crawl dump

Performance w/o Training

• Closed-book v.s. Vanilla RIC

			64	-shot			102	4-shot	
	MLM	NQ	WoW	FEVER	Avg.	NQ	WoW	FEVER	Avg.
Closed-book	1.083	6.5	14.1	59.0	26.5	10.7	16.5	75.3	34.2
Vanila RIC	-	9.0	14.1	67.0	30.0	9.9	16.6	78.3	34.9
					Ret impro these	rieval a ves the e knowl ta	ugment perform ledge int asks!	ation ance of ensive	

How to further improve the performance with few-shot learning? Specifically, by co-training the retriever and the LM

- What we have:
 - Input-output pairs from the task of interest.
 - LM.
 - Datastore.
- What is desirable, but we don't have:
 - supporting fact for each query.

• Annotations on the documentations, e.g., a gold document that contains the

How to further improve the performance with few-shot learning? Specifically, by co-training the retriever and the LM

- What we have:
 - Input-output pairs from the task of interest.
 - LM.
 - Datastore.
- What is desirable but we don't have:
 - supporting fact for each query.

Q: How to find useful signals to co-train the retriever?

• Annotations on the documentations, e.g., a gold document that contains the

Leverage the language model to provide supervisory signals!

Izacard et al. 2022, "Atlas: Few-shot Learning with Retrieval Augmented Language Models"

signals!

Training Objectives for the Retriever

- Attention Distillation (ADist)
- End-to-end training of Multi-Document Reader and Retriever (EMDR2)
- Perplexity Distillation (PDist)
- Leave-one-out Perplexity Distillation (LOOP)

Training Objectives for the Retriever

Table 1: Retriever loss ablation. We compare different loss functions to pre-train the retriever jointly with the language model. We use the prefix MLM task, and the December 2021 Wikipedia dump for both the index and pre-training data. Fine-tuning is performed with query-side fine-tuning and the loss used for pre-training. Best result is bold, second highest underlined.

			64	-shot		1024-shot				
	MLM	NQ	WoW	FEVER	Avg.	NQ	WoW	FEVER	Avg.	
Closed-book	1.083	6.5	14.1	59.0	26.5	10.7	16.5	75.3	34.2	
No Joint pre-training	-	9.0	14.1	67.0	30.0	9.9	16.6	78.3	34.9	
Fixed retriever	0.823	39.9	14.3	72.4	42.2	45.3	17.9	90.0	51.1	
ADist	0.780	40.9	14.4	73.8	43.0	46.2	17.2	90.9	51.4	
EMDR^2	0.783	43.3	14.6	72.1	43.3	44.9	18.3	85.7	49.6	
PDist	0.783	45.0	15.0	77.0	45.7	44.9	17.9	90.2	51.0	
LOOP	0.766	41.8	15.0	<u>74.4</u>	43.7	47.1	17.9	87.5	50.8	

Izacard et al. 2022, "Atlas: Few-shot Learning with Retrieval Augmented Language Models"

More helpful with fewer shots

- Prefix language
- Masked language modeling
- Title to section generation

Izacard et al. 2022, "Atlas: Few-shot Learning with Retrieval Augmented Language Models"

Pretext Tasks

Used to jointly pre-train the retriever and the language model using only unsupervised data.

Pretext Tasks

			64	-shot		1024-shot			
	MLM	NQ	WoW	FEVER	Avg.	NQ	WoW	FEVER	Avg.
Closed-book	1.083	6.5	14.1	59.0	26.5	10.7	16.5	75.3	34.2
No Joint pre-training	-	9.0	14.1	67.0	30.0	9.9	16.6	78.3	34.9
Fixed retriever	0.823	39.9	14.3	72.4	42.2	45.3	17.9	90.0	51.1

Izacard et al. 2022, "Atlas: Few-shot Learning with Retrieval Augmented Language Models"

Used to jointly pre-train the retriever and the language model using only unsupervised data.

Pretext Tasks

Used to jointly pre-train the retriever and the language model using only unsupervised data.

			64	-shot			102	4-shot	
	MLM	NQ	WoW	FEVER	Avg.	NQ	WoW	FEVER	Avg.
Closed-book	1.083	6.5	14.1	59.0	26.5	10.7	16.5	75.3	34.2
No Joint pre-training	-	9.0	14.1	67.0	30.0	9.9	16.6	78.3	34.9
Fixed retriever	0.823	39.9	14.3	72.4	42.2	45.3	17.9	90.0	51.1

Table 2: **Pretext task ablation.** We compare different pretext tasks, used to jointly pre-train our models. Examples are randomly sampled from the training set of the KILT version of the dataset. We report the exact match on NaturalQuestions, the F1 score on Wizard of Wikipedia and the accuracy on FEVER.

		64-shot				1024-shot				
	NQ	WoW	FEVER	Avg.	NQ	WoW	FEVER	Avg.		
Prefix Language Modelling Masked Language Modelling Title-to-section generation	41.0 42.7 41.1	14.5 14.9 15.2	64.9 69.7 66.1	40.1 42.4 40.8	44.7 44.7 45.4	17.9 18.3 17.9	86.0 88.8 84.6	49.5 50.6 49.3		Simi help

Efficient Retriever Fine-tuning

- Full index update (expensive)
- Re-ranking
- Query-side fine-tuning

Efficient Retriever Fine-tuning

Table 4: Retriever fine-tuning ablation. Here, we compare different strategies to fine-tune the retriever in a few-shot setting.

		64	-shot		1024-shot					
	NQ	WoW	FEVER	Avg.	NQ	WoW	FEVER	Avg.		
Standard fine-tuning	44.3	14.9	73.2	44.1	47.0	18.4	89.7	51.7		
Top-100 re-ranking	44.2	14.6	75.4	44.7	47.1	18.7	88.9	51.6		
Query-side fine-tuning	45.0	15.0	77.0	45.7	44.9	17.9	90.2	51.0		
Fixed retriever	36.8	14.5	72.0	41.1	38.0	17.7	89.3	48.3		

Izacard et al. 2022, "Atlas: Few-shot Learning with Retrieval Augmented Language Models"

Both reranking and query-side fine-tuning preserve or even improve performance though drastically reduce computation

Analysis Beating larger models with retrieval augmentations.

		mance			s a run		model	5126.		
	5-shot			5-sho	5-shot (multi-task)			Full / Transfer		
	770M	$3\mathrm{B}$	11B	770M	$3\mathrm{B}$	11B	770M	3B	11B	
Closed-book T5 Atlas	$\begin{array}{c} 29.2\\ 38.9 \end{array}$	$\begin{array}{c} 35.7\\ 42.3\end{array}$	$\frac{36.1}{43.4}$	$\begin{array}{c} 26.5 \\ 42.1 \end{array}$	$\begin{array}{c} 40.0\\ 48.7\end{array}$	$\begin{array}{c} 43.5\\ 56.4\end{array}$	$\begin{array}{c} 42.4\\ 56.3\end{array}$	$\begin{array}{c} 50.4 \\ 59.9 \end{array}$	$\begin{array}{c} 54.0\\ 65.8\end{array}$	
Δ	+9.8	+6.6	+7.3	+15.6	+8.7	+12.9	+13.9	+9.5	+11.8	

Small model outperforms larger models with retrieval augmentation!

Izacard et al. 2022, "Atlas: Few-shot Learning with Retrieval Augmented Language Models"

Table 5. Performance on MMLI as a function of model size

Beating larger models with retrieval augmentations.

Table 7: Comparison to state-of-the-art on MMLU. *For the 5-shot setting, ATLAS uses fine-tuning, while previous works use in-context learning. The ATLAS model uses de-biased inference. Train FLOPS refers to total the amount of computation necessary to train the model, including pre-training and/or fine-tuning.

Setting	Model	Params	Train FLOPS	All	Hum.	Soc. Sci.	STEM	Other
zero-shot	Atlas	11B	$3.5\mathrm{e}22$	47.1	43.6	54.1	38.0	54.4
	GPT-3	$175\mathrm{B}$	$3.1\mathrm{e}23$	43.9	40.8	50.4	36.7	48.8
5 shot	Gopher	280B	$5.0\mathrm{e}23$	60.0	56.2	71.9	47.4	66.1
5-SHOU	Chinchilla	70B	$5.0\mathrm{e}23$	67.5	63.6	79.3	55.0	73.9
	Atlas^*	11B	$3.5\mathrm{e}22$	47.9	46.1	54.6	38.8	52.8
5-shot (multi-task)	Atlas	11B	$3.5\mathrm{e}22$	56.6	50.1	66.4	46.4	66.2
	UnifiedQA	11B	$3.3\mathrm{e}22$	48.9	45.6	56.6	40.2	54.6
Full / Transfer	GPT-3	175B	$3.1\mathrm{e}23$	53.9	52.5	63.9	41.4	57.9
-	Atlas	11B	$3.5\mathrm{e}22$	66.0	61.1	77.2	53.2	74.4

Small model outperforms larger models with retrieval augmentation!

Izacard et al. 2022, "Atlas: Few-shot Learning with Retrieval Augmented Language Models"

Analysis

Analysis Impact of inference biases

cyclic permutations for de-biasing, which increases inference costs by a factor of $4 \times$.

	Zero-shot	5-shot	5-shot (multi-task)	Full / Transfer
Standard Inference	36.8	43.4	56.4	65.8
De-biased Inference	47.1	47.9	56.6	66.0

De-biasing works effectively. With more training samples, the need decreases.

Izacard et al. 2022, "Atlas: Few-shot Learning with Retrieval Augmented Language Models"

Table 6: Standard vs de-biased inference for MMLU These results are reported for ATLAS-11B, using

Analysis **Composition of retrieved documents**

Izacard et al. 2022, "Atlas: Few-shot Learning with Retrieval Augmented Language Models"

Wikipedia makes up about 15% of retrieved passages, though it only makes up about 10% of index.

> Retriever tends to retrieve from more relevant and higherquality data.

Analysis **Temporal sensitivity and updatability**

Table 11: Results on our TempLAMA-derived dataset. We report performance for a static, closed-book T5-11B, as well as ATLAS-11B supplied with a test-time Wikipedia index from 2017 or 2020. We evaluate models finetuned on a small training set of 248 time-sensitive cloze-question-answer pairs, using answers either from 2017 or 2020. Good models should score highly when the test set year matches the year of the test-time index, and score low otherwise.

Temporally mismatched train set leads to worse closed-book performance.

			2017 Test Se	et Acc.	2020 Test Se	et Acc.	
	Train Set	Test-time Index	Closed-book	ATLAS	Closed-book	ATLAS	Tomporally
_	2017 answers	$2017 \\ 2020$	$\begin{array}{c} 12.1 \\ 12.1 \end{array}$	$57.7 \\ 10.2$	$\begin{array}{c} 2.9 \\ 2.9 \end{array}$	$\begin{array}{c} 1.5\\ 53.1 \end{array}$	mismatched inde
_	2020 answers	$2017 \\ 2020$	4.8 4.8	$\frac{50.1}{3.5}$	$\begin{array}{c} 3.6\\ 3.6\end{array}$	$\begin{array}{c} 4.2 \\ 60.5 \end{array}$	leads to inferior performance!

Table 12: Impact of index data temporality on NaturalQuestions. We report exact match performance on NaturalQuestions using different Wikipedia dumps in the index. We observe that the dump from December 2018, commonly used for NaturalQuestions, leads to the best result.

	Dec. 2017	Dec. 2018	Aug. 2019	Dec. 2020	Dec. 2021
64-shot Full	$\begin{array}{c} 44.7 \\ 63.2 \end{array}$	$\begin{array}{c} 45.1 \\ 64.0 \end{array}$	$\begin{array}{c} 44.1 \\ 62.4 \end{array}$	$\begin{array}{c} 44.0\\ 61.1 \end{array}$	$\begin{array}{c} 41.3\\ 59.6\end{array}$

References

- ACL tutorial: <u>https://acl2023-retrieval-lm.github.io/</u>
- Ram, Ori, et al. "In-context retrieval-augmented language models."
- Shi, Weijia, et al. "Replug: Retrieval-augmented black-box language models."
- Khandelwal, Urvashi, et al. "Generalization through memorization: Nearest neighbor language models."
- Borgeaud et al. 2022. "Improving language models by retrieving from trillions of tokens"
 Izacard, Gautier, et al. "Unsupervised dense information retrieval with contrastive
- Izacard, Gautier, et al. "Unsupervised den learning."
- Izacard et al. 2022, "Atlas: Few-shot Learning with Retrieval Augmented Language Models"

Retrieval-based Language Models: Where They Help & Where They Don't

- Jacqueline He
 - **CSE599J**
 - Feb. 16, 2023

Retrieval-based LMs

• Any **parametric** language model that queries from an external **non**parametric datastore during inference time

There is no unified retrieval-based LM architecture: NN-based LMs, retrieve-in-context LMs, etc. But the underlying groundwork is pretty much the same!

Retrieval-based LMs

• Retrieval-based language models confer many advantages over solution!

Non-parametric components

parametric language models...but they are not a silver bullet

Parametric LM

When *Not* to Trust Language Models: Investigating Effectiveness and Limitations of Parametric and Non-Parametric Memories

Alex Mallen^{*} Akari Asai^{*} Victor Zhong Rajarshi Das Hannaneh Hajishirzi[&] Daniel Khashabi[•] ^{\$}University of Washington ^{\$}Johns Hopkins University ^{\varphi} Allen Institute for AI {atmallen,akari,vzhong,rajarshi,hannaneh}@cs.washington.edu danielk@jhu.edu

You Who is Donna Tartt?

ChatGPT

Donna Tartt is an American author known for her novels, particularly her debut, "The Secret History," which was published in 1992. Born on December 23, 1963, in Greenwood, Mississippi, Tartt gained widespread acclaim with "The Secret History," a psychological thriller set in an elite college and centered around a group of students studying ancient Greek. The novel explores themes of obsession, morality, and the consequences of intellectual pursuits.

Following the success of her first novel, Donna Tartt published "The Little Friend" in 2002, a Southern Gothic mystery set in Mississippi. In 2013, she released "The Goldfinch," which won the Pulitzer Prize for Fiction in 2014. "The Goldfinch" follows the life of a young boy who survives a traumatic event and becomes entangled in the world of art theft.

Donna Tartt is known for her meticulous writing style and her ability to create richly detailed and immersive narratives. Her novels often delve into complex psychological and philosophical themes.

3......

007

GPT 3.5, accessed Feb. 2024

• Language models **memorize** factual knowledge...

Donna Tartt

文A 43 languages ~

Article Talk

Edit View history Tools ~

Donna Tartt

From Wikipedia, the free encyclopedia

Donna Louise Tartt (born December 23, 1963)^[2] is an American novelist and essayist. Her novels are The Secret History (1992), The Little Friend (2002), and The Goldfinch (2013), which has been adapted into a 2019 film of the same name^[3] She was included in *Time* magazine's 2014 "100 Most Influential People" list.^[4]

Early life [edit]

Tartt was born in Greenwood, Mississippi, in the Mississippi Delta, the elder of two daughters. She was raised in the nearby town of Grenada. Her father, Don Tartt, was a rockabilly musician, turned freeway "service station owner-cum-local politician", while her mother, Taylor, was a secretary.^{[5][6][7]} Her parents were avid readers, and her mother would read while driving.^[8]

I know a ton of poetry by heart, When I was a little kid, first thing I memorized were really long poems by A. A. Milne ... I also know all these things that I was made to learn. I'm sort of this horrible repository of doggerel verse.^[5]

In 1968, aged five, Tartt wrote her first poem.^[9] In 1976, aged thirteen, she was published for the first time when a sonnet was included in the *Mississippi Review*.^{[5][10]} In high school, she was a freshman cheerleader for the basketball team and worked in the public library.^{[6][11][12]}

In 1981, Tartt enrolled in the University of Mississippi where her writing caught the attention of Willie Morris while she was a freshman. Finding her in the Holiday Inn bar one evening, Morris said to her, "My name is Willie Morris, and I think you're a genius."[9][13][14][15][16]

Following a recommendation from Morris, Barry Hannah, then an Ole Miss writer-in-residence, admitted the eighteen-year-old Tartt into his graduate course on the short story. "She was deeply literary", said Hannah. "Just a rare genius, really. A literary star."[17]

In 1982, following the suggestion of Morris and others, she transferred to Bennington College. At Bennington, Tartt studied classics with Claude Fredericks, and also met Bret Easton Ellis, Jonathan Lethem, and Jill Eisenstadt.^{[18][2]} Tartt graduated in 1986.^[19]

"Donna Tartt", Wikipedia, accessed Feb. 2024

You

Who did Donna Tartt dedicate The Little Friend to?

ChatGPT

"The Little Friend" by Donna Tartt is dedicated to her father, Don Tartt. The dedication reads: "For my father, Don Tartt, with love." Donna Tartt is known for being private about her personal life, but she expressed her appreciation and love for her father through this dedication in her second novel, published in 2002.

3.5, accessed Feb. 2024

Nope! TLF is dedicated to a "Neal" To be fair, this question is more obscure than the previous one...

• Language models **memorize** factual knowledge...**but not perfectly!!!**

achieve good accuracy on the long tail is infeasible (BLOOM $\rightarrow 1$ quintillion params.!!!)

Kandpal et al., 2022. Large Language Models Struggle to Learn Long-Tail Knowledge

Figure 1 from Kandpal et al. (2022)

Large language models struggle with long-tail knowledge; scaling to

Relationship	Template
occupation	What is [subj] 's occupation?
place of birth	In what city was [subj] born?
genre	What genre is [subj]?
father	Who is the father of [subj]?
country	In what country is [subj]?
producer	Who was the producer of [subj] ?
director	Who was the director of [subj] ?
capital of	What is [subj] the capital of?
screenwriter	Who was the screenwriter for [subj] ?
composer	Who was the composer of [subj] ?
color	What color is [subj] ?
religion	What is the religion of [subj] ?
sport	What sport does [subj] play?
author	Who is the author of [subj]?
mother	Who is the mother of [subj]?
capital	What is the capital of [subj]?

Table 2 from Mallen et al. (2023)

- **PopQA**: Dataset of 14k questions about long-tail entities
 - **Query:** Knowledge triple (*S*, *R*, *O*)
 - knowledge graph

Mallen et al., 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories.

Pop = monthly Wikipedia page views

Pop(Donna Tartt) < Pop(J. K. Rowling)</pre>

Acc_{LM}(Donna Tartt, occupation, Writer)

< Acc_{LM}(J. K. Rowling, occupation, Writer)

Answers: Set of entities *E* s.t. knowledge triple (*S*, *R*, *E*) exists in the

42

Figure 4 from Mallen et al. (2023)

- memorization ability

Mallen et al., 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories.

Entity popularity and relationship type are strong predictors of

• LM parametric knowledge fails to extend to long-tail distributions

43

Figure 6 from Mallen et al. (2023)

Scaling does **not** improve memorization of long-tail knowledge!

Mallen et al., 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories.

44

Use non-parametric memorization for long-tail knowledge

Key idea: Just as you would consult an encyclopedia to look up obscure knowledge, an LM can query an external datastore for long-tail information!

In 1999 "The White Suit" an auteur film by Ristovski (director, writer, lead actor, and producer) was at the Cannes Film Festival in the Critics Week program...

Use non-parametric memorization for long-tail knowledge

• Not only does retrieval help average QA performance, the improvements are significant for less popular facts.

Mallen et al., 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories.

Better performance on QA with low-popularity entities

Figure 9 from Mallen et al. (2023)

46

What's the catch? Retrieved context does not always help

- For 10% of questions, retrieval augmentation can mislead the LM and induce it to answer incorrectly (without retrieval, it would answer correctly) X
- Constant retrieval means higher costs and inference-time latency! X
- Workaround: Adaptive retrieval based on popularity of query 🔽

Mallen et al., 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories.

Contriever-a	ugmented LM
succeeded	failed
0.83 (24%)	0.14 (10%)
0.88 (17%)	0.11 (49%)

a a a''

Table 1 from Mallen et al. (2023)

47

What's the catch? Retrieved context does not always help

- than large models
- models more than **smaller** models
- Is entity popularity the best proxy for deciding when to retrieve?

Mallen et al., 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories.

Figure 10 from Mallen et al. (2023)

• Small models (which memorize less) reap the benefits of retrieval more

• Relative to vanilla (constant) retrieval, adaptive retrieval helps larger

48

What are other **downsides** of parametric LMs? How can retrieval-based LMs **close the gap**?

49

Easy Knowledge Updates

- Not all information in the pre-trained LM is desirable!

 - **Domain adaptation** (e.g., "These hipster glasses look so cheugy...2/5 stars 🗐 🔐")

Out-of-date information (e.g., "Ben Bernanke is the chair of the US Federal Reserve...")

Personally identifiable information (PII) (e.g, "My Club Penguin password is xxxx...")

Copyrighted or restricted data (e.g., "The snow in the mountains was melting and Bunny had been dead for several weeks before we came to understand the gravity of our situation...")

50

Easy Knowledge Updates

• **Key idea:** Simply swap the index—no need for further re-training

Min et al., 2023. SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore

Figure 1 from Min et al. (2023)

Copyright / restricted data: Parametric LMs trained on permissively-licensed data can use a datastore with copyrighted / restricted data, which can be easily swapped out

51

Easy Knowledge Updates

• Key idea: Simply swap the index—no need for further re-training

Training Data	Datastore	store Perplexity (.	
		Dev	Test
WIKI-3B	-	37.13	34.84
BOOKS	-	14.75	11.89
WIKI-3B	Воокѕ	24.85	20.47

Table 4 from Khandelwal et al. (2020)

Domain adaptation: "Free" (i.e., no parameter updates) domain adaptation by creating a datastore for the target domain

Khandelwal et al., 2020.Generalization through Memorization: Nearest Neighbor Language Models

What are some **failure modes** in retrieval-based LMs?

1. Retrieval-based LMs struggle with reasoning

- Retrieval-based LMs show a competitive edge on knowledge-intensive tasks (e.g., ODQA), but improvements do not generalize to other tasks
- Many retrieval-based LMs struggle with **multi-step entailments or logical reasoning**: kNN-LM, REALM, DPR+FiD, Contriever + ATLAS/Flan-T5...
- Retrieval based on similarity metric—which is an imperfect proxy!!

Que	Question: Phobos should be cla as which type of body?				
 Knowledge Statements 1. Phobos orbits Mars. 2. Mars is a kind of planet. 3. Moons orbit planets. 4. Phobos is named after the Gragod of fear and panic. 5. A moon is located in space. 6. Classifying is a kind of science process. 					
		ideal retrie			
ſ	Retrieved Statements				
	 + Phobos orbits Mars. + Mars is a kind of planet. + Moons orbit planets. 				

Both the retriever and the LM are distinct sources of failure

Figure 1 from BehnamGhader et al. (2023)

BehnamGhader et al., 2023. Can Retriever-Augmented Language Models Reason? The Blame Game Between the Retriever and the Language Model

2. Retrieval-based LMs are easily distracted by bad context

- Bad (e.g., random, low-quality) context hurts retrieval-based LM performance significantly, such that even a no-retrieval baseline performs better
- Amount of bad context retrieved is datastore-dependent; currently no good intuition as to what constitutes a desirable datastore (besides Wikipedia)

Yoran et al., 2023. Making Retrieval-Augmented Language Models Robust to Irrelevant Context

55

References

Akari Asai, Zexuan Zhong, Danqi Chen, Pang Wei Koh, Luke Zettlemoyer, Hannaneh Hajishirzi, Wen-tau Yih. 2024. Reliable, Adaptable, and Attributable Language Models with Retrieval.

Parishad BehnamGhader, Santiago Miret, and Siva Reddy. 2023. Can retriever-augmented language models reason? the blame game between the retriever and the language model. In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 15492–15509, Singapore. Association for Computational Linguistics.

Bernd Bohnet, Vinh Q. Tran, Pat Verga, Roee Aharoni, Daniel Andor, Livio Baldini Soares, Massimiliano Ciaramita, Jacob Eisenstein, Kuzman Ganchev, Jonathan Herzig, Kai Hui, Tom Kwiatkowski, Ji Ma, Jianmo Ni, Lierni Sestorain Saralegui, Tal Schuster, William W. Cohen, Michael Collins, Dipanjan Das, Donald Metzler, Slav Petrov, and Kellie Webster. 2023. Attributed question answering: Evaluation and modeling for attributed large language models.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. 2022. Atlas: Few-shot learning with retrieval augmented language models.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. 2020. Generalization through memorization: Nearest neighbor language models.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi. 2023. When not to trust language models: Investigating effectiveness of parametric and non-parametric memories. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9802–9822, Toronto, Canada. Association for Computational Linguistics.

Sewon Min, Suchin Gururangan, Eric Wallace, Hannaneh Hajishirzi, Noah A. Smith, and Luke Zettlemoyer. 2023. Silo language models: Isolating legal risk in a nonparametric datastore. Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. 2023. Making retrieval-augmented language models robust to irrelevant context.

Izacard et al., 2022

- Why didn't the four training objectives for the 1. retriever result in a notable improvement in end-toend performance compared to pretext training?
- What additional desirable properties of retrievers were 2. not focused on for optimization in this study?
- 3. Concerning temporal sensitivity, how could we enhance optimization for queries with ambiguous target time periods?

Food for Thought! (Discussion Questions)

Mallen et al., 2023

- 1. Using retrieval helps with domain adaptation. What are the pros and cons of using retrieval-based language modeling versus domain-adaptive pre-training?
- 2. In Mallen et al., 2023, adaptive retrieval works based on whether the query falls under a pre-determined popularity threshold. What are the limitations of this heuristic; is there a better proxy to decide when to retrieve?
- 3. A recurrent theme with retrieval-based LMs is that we can beat scaling trends simply by offloading knowledge from the model parameters to some non-parametric repository. Do smaller retrieval-based LMs beat larger parametric LMs on every task?
- 4. How would you design a retrieval-based LM that can better withstand irrelevant or misleading context? Does the source of failure lie in the base LM, or the retriever?
- 5. Besides QA, what are other knowledge-intensive tasks that retrieval-based LMs might have an edge on? What are tasks that retrieval-based LMs might struggle with? ⁵⁷

