
Studying Large Language Model Generalization
with Influence Functions

Antropic

Motivation

● We want to understand what training data lead to a specific behavior of the
model

○ For example, when a model is outputting some biased view, we might want to find which
training examples influence such behavior the most, and possibly remove it from the training
dataset

Motivation

● We want to understand what training data lead to a specific behavior of the
model

○ For example, when a model is outputting some biased view, we might want to find which
training examples influence such behavior the most, and possibly remove it from the training
dataset

● Influence function is a mean to find such examples, by computing the
influence score between two data points m and n

○ If we remove/add m from/to the training set, how will it influence the loss of applying the result
model on n

A quick example

A first example

Derivation

Response function

Influence on parameter

First-order approximation

Derivation

Response function

Influence on parameter

First-order approximation

Derivation

Response function

Influence on parameter

Influence on a metric (eg: val loss)

First-order approximation

Derivation

Response function

Influence on parameter

Influence on a metric (eg: val loss)

First-order approximation

However…

● The previous formulation assumed there exists an optima, and we did train
the model until convergence

However…

● The previous formulation assumed there exists an optima, and we did train
the model until convergence

● This is not true for modern neural networks, and Bae et al. proposed PBRF,
which claims to be the objective that influence function approximates for

However…

● The previous formulation assumed there exists an optima, and we did train
the model until convergence

● This is not true for modern neural networks, and Bae et al. proposed PBRF,
which claims to be the objective that influence function approximates for

Minimize divergence in terms of prediction Minimize difference in parameters

However…

● The previous formulation assumed there exists an optima, and we did train
the model until convergence

● This is not true for modern neural networks, and Bae et al. proposed PBRF,
which claims to be the objective that influence function approximates for

Computation

● The influence function requires computing inverse-Hessian-vector-product
(IHVP), which is intractable for large models.

● Approximation methods: Conjugate Gradient, LiSSA, EK-FAC

Computation

● The influence function requires computing inverse-Hessian-vector-product
(IHVP), which is intractable for large models.

● Approximation methods: Conjugate Gradient, LiSSA, EK-FAC

Computation

● The influence function requires computing inverse-Hessian-vector-product
(IHVP), which is intractable for large models.

● Approximation methods: Conjugate Gradient, LiSSA, EK-FAC

● Pre-training corpus is large so the search space is pruned with TF-IDF
filtering

Computation

● The influence function requires computing inverse-Hessian-vector-product
(IHVP), which is intractable for large models.

● Approximation methods: Conjugate Gradient, LiSSA, EK-FAC

● Training corpus is huge, the paper only considered 10M sequences, and
accelerate the computation with query batching

Computation

● We can also decompose the influence by layers and tokens to gain
fine-grained attribution

● One caveat is that the gradient at a certain token/layer depends on the rest of
the sequence/layers

Is EK-FAC approximating the influence function well?

● Experiment: How does EK-FAC correlate with the PBRF

Is EK-FAC really computing the influence?

● Experiment: How does EK-FAC correlate with the PBRF

Sparsity

● The higher end of influence scores follows a power law distribution

Sparsity

● The higher end of influence scores follows a power law distribution

Sparsity

● The higher end of influence scores follows a power law distribution

● Highest 1% influential sequence covers 12-52% of the influence

Sparsity

● The high influence scores follows a power law distribution

● Highest 1% influential sequence covers 12-52% of the influence

Qualitative observations

● Influential sequences in smaller models usually features overlapping tokens,
while in larger models it captures more abstract pattern

Qualitative observations

● Influential sequences in smaller models usually features overlapping tokens,
while in larger models more abstract pattern can be found

Qualitative observations

● Influential sequences in smaller models usually features overlapping tokens,
while in larger models more abstract pattern can be found

● Influence is more translation-invariant in larger model

Qualitative observations

● Influential sequences in smaller models usually features overlapping tokens,
while in larger models more abstract pattern can be found

● Influence is more translation-invariant in larger model

● Layers exhibit different influence pattern

Robustness of Influence

● Prompt: The first President of the Republic of Astrobia was
● Completion: Zorald Pfaff

Robustness of Influence

● Prompt: The first President of the Republic of Astrobia was
● Completion: Zorald Pfaff

Robustness of Influence

● Prompt: The first President of the Republic of Astrobia was
● Completion: Zorald Pfaff

Robustness of Influence

● Prompt: The first President of the Republic of Astrobia was
● Completion: Zorald Pfaff

Various methods of computing influence

● N-gram based features (Xie, et al.): bag-of-words
● Feature similarity (Hanawa, et al.): dot product, cosine similarity, etc.
● Gradient similarity (Pruthi, et al.): dot product between gradients
● Hessian (Koh, et al.): Hessian-vector-product

Various methods of computing influence

● N-gram based features (Xie, et al.): bag-of-words
● Feature similarity (Hanawa, et al.): dot product, cosine similarity, etc.
● Gradient similarity (Pruthi, et al.): dot product between gradients
● Hessian (Koh, et al.): Hessian-vector-product

● Only consider part of the model or do PEFT like LoRA
● Subsampling the training set if it is too large

Various methods of computing influence

● N-gram based features (Xie, et al.): bag-of-words
● Feature similarity (Hanawa, et al.): dot product, cosine similarity, etc.
● Gradient similarity (Pruthi, et al.): dot product between gradients
● Hessian (Koh, et al.): Hessian-vector-product

● Only consider part of the model or do PEFT like LoRA
● Subsampling the training set if it is too large

● Beyond performing analysis, influence or data attribution in general can do
much more, a lot of paper use them to select data to improve performance

Citations
Koh, P., & Liang, P. (2017). Understanding Black-box Predictions via Influence Functions. International Conference on Machine Learning.

Xie, S.M., Santurkar, S., Ma, T., & Liang, P. (2023). Data Selection for Language Models via Importance Resampling. ArXiv, abs/2302.03169.

Pruthi, G., Liu, F., Sundararajan, M., & Kale, S. (2020). Estimating Training Data Influence by Tracking Gradient Descent. ArXiv, abs/2002.08484.

Hanawa, K., Yokoi, S., Hara, S., & Inui, K. (2021). Evaluation of Similarity-based Explanations. International Conference on Learning
Representations.

Bae, J., Ng, N., Lo, A., Ghassemi, M., & Grosse, R.B. (2022). If Influence Functions are the Answer, Then What is the Question? ArXiv,
abs/2209.05364.

Simfluence: Modeling the Influence of
Individual Training Examples by

Simulating Training Runs

Explainable ML

● How does a model work?

Explainable ML

● How does a model work?
○ Locally fitting a simple model at a test sample (LIME)

Explainable ML

● How does a model work?
○ Locally fitting a simple model at a test sample (LIME)
○ Look at how prediction changes by tweaking the sample (Saliency Maps)

Explainable ML

● How does a model work?
○ Locally fitting a simple model at a test sample (LIME)
○ Look at how prediction changes by tweaking the sample (Saliency Maps)
○ Look at how training samples affect the prediction

Training Data Attribution

● How does a training sample affect the success of a model?
○ If you take away a training sample, how does it affect the loss on a specific test sample

(“influence”)?
○ Allows us to understand of which data sample is important for the model’s decision making

● Issue: too expensive to compute for every training sample :(

Training Data Attribution

● What are some approaches to approximate this?
○ Approximate the influence with Hessian (influence function)

Training Data Attribution

● What are some approaches to approximate this?
○ Compute during training how each sample influenced the final prediction (TracIn)

Training Data Attribution

● What are some approaches to approximate this?
○ Approximate models with a kernel machine that is easier to compute influence score with

(TRAK)

Training Data Attribution

● What might be some issues with these approaches?
○ Approximate the influence with Hessian (influence function)
○
○
○ If I have a dog image dataset with 100 Kodas, 1 Dub, and other dogs, and we are presented

with a Koda picture for testing

Training Data Attribution

● What might be some issues with these approaches?
○ Approximate the influence with Hessian (influence function)
○
○
○ If I have a dog image dataset with 100 Kodas, 1 Dub, and other dogs, and we are presented

with a Koda picture for testing
■ Removing a Koda image might do little to the loss, but removing the Dub image will have

a larger impact on the loss (Noooo Koda >> Dub)

Training Data Attribution

● What might be some issue with these approaches?
○ Compute during training how each sample influenced the prediction final (TracIn)
○ Early training samples will have a larger influence on the final loss!

● What was common with the previous approaches?
● They gave only one score, and assume the scores to be additive. It can’t

capture the complexity of influence

● How to address it?
● Use two numbers instead! Let’s in addition frame it as simulating how training

on different samples influence the test sample performance

● Can I still …?
● Yes, as it’s a superset of previously mentioned techniques and more

Simfluence

Simfluence

Goal of Simfluence: predict loss on a test sample for different training “curriculum”

“What if I had removed <X> group of examples from my training data?” “What if I
had trained on <Y> first, then <X>?” “What if I duplicated <Z> ten times?”

Formulation

Linear Markov process for each test sample z, and looks at the loss L

Need to train m simulators for modeling m test samples, with in total 2n
parameters

Optimization

Evaluation Metric

Results

Results

Related Works

Simfluence Influence
function

TracIn TRAK

Influence score Two scores One score One score One score

Mechanism Simulation
based

Influence
function

Gradient based Sampling based

Compute
bottleneck

Track
performance of
a test sample
for 2n training
samples

Compute
Hessian (with
some
approximation
speedups)

Do Simfluence
method or an
approximation
by evaluating
checkpoint

Simplify model
with a kernel
machine

References

Guu, Kelvin, Albert Webson, Ellie Pavlick, Lucas Dixon, Ian Tenney, and Tolga Bolukbasi. “Simfluence: Modeling the Influence of
Individual Training Examples by Simulating Training Runs.” arXiv, March 14, 2023. http://arxiv.org/abs/2303.08114.

Koh, Pang Wei, and Percy Liang. “Understanding Black-Box Predictions via Influence Functions.” arXiv, December 29, 2020.
http://arxiv.org/abs/1703.04730.

Park, Sung Min, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. “TRAK: Attributing Model Behavior at
Scale.” arXiv, April 3, 2023. http://arxiv.org/abs/2303.14186.

Pruthi, Garima, Frederick Liu, Mukund Sundararajan, and Satyen Kale. “Estimating Training Data Influence by Tracing Gradient
Descent.” arXiv, November 14, 2020. http://arxiv.org/abs/2002.08484.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “‘Why Should I Trust You?’: Explaining the Predictions of Any Classifier.”
arXiv, August 9, 2016. http://arxiv.org/abs/1602.04938.

Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps.” arXiv, April 19, 2014. https://doi.org/10.48550/arXiv.1312.6034.

http://arxiv.org/abs/2303.08114
http://arxiv.org/abs/1703.04730
http://arxiv.org/abs/1703.04730
http://arxiv.org/abs/2303.14186
http://arxiv.org/abs/2002.08484
http://arxiv.org/abs/1602.04938
https://doi.org/10.48550/arXiv.1312.6034

Discussion Questions

● Do you think there could be a better “influence score”, instead of modeling a
function?

● How would you design a better simulator? Something that goes beyond a
linear setup? What are possible use cases?

● What do you think about their data requirements?
● What do you think about their standard error?
● How do you think about their evaluation? Are there issues with their setups?

Discussion Questions

● Are you convinced by the choice of treating PBRF as ground truth? Can you think of an
alternative method to verify the influence estimate?

● What are the differences between adding and subtracting an example from the training
set under the notion of influence function?

● Applying to modern instruction-tuning setup, how would you pick and aggregate the
feature given an example?

● What kind of inaccuracy do you expect the approximation would induce?
● What other analysis do you think is worth performing with influence function?
● Beyond the analysis angle, what other applications can you imagine with influence

function?

