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● We want to understand what training data lead to a specific behavior of the 
model

○ For example, when a model is outputting some biased view, we might want to find which 
training examples influence such behavior the most, and possibly remove it from the training 
dataset

● Influence function is a mean to find such examples, by computing the 
influence score between two data points m and n

○ If we remove/add m from/to the training set, how will it influence the loss of applying the result 
model on n
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Computation

● The influence function requires computing inverse-Hessian-vector-product 
(IHVP), which is intractable for large models. 

● Approximation methods: Conjugate Gradient, LiSSA, EK-FAC

● Training corpus is huge, the paper only considered 10M sequences, and 
accelerate the computation with query batching



Computation

● We can also decompose the influence by layers and tokens to gain 
fine-grained attribution

● One caveat is that the gradient at a certain token/layer depends on the rest of 
the sequence/layers



Is EK-FAC approximating the influence function well?

● Experiment: How does EK-FAC correlate with the PBRF



Is EK-FAC really computing the influence?

● Experiment: How does EK-FAC correlate with the PBRF



Sparsity

● The higher end of influence scores follows a power law distribution



Sparsity

● The higher end of influence scores follows a power law distribution



Sparsity

● The higher end of influence scores follows a power law distribution

● Highest 1% influential sequence covers 12-52% of the influence



Sparsity

● The high influence scores follows a power law distribution

● Highest 1% influential sequence covers 12-52% of the influence
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Qualitative observations

● Influential sequences in smaller models usually features overlapping tokens, 
while in larger models more abstract pattern can be found

● Influence is more translation-invariant in larger model

● Layers exhibit different influence pattern
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● Gradient similarity (Pruthi, et al.): dot product between gradients
● Hessian (Koh, et al.): Hessian-vector-product



Various methods of computing influence

● N-gram based features (Xie, et al.): bag-of-words
● Feature similarity (Hanawa, et al.): dot product, cosine similarity, etc.
● Gradient similarity (Pruthi, et al.): dot product between gradients
● Hessian (Koh, et al.): Hessian-vector-product

● Only consider part of the model or do PEFT like LoRA
● Subsampling the training set if it is too large



Various methods of computing influence

● N-gram based features (Xie, et al.): bag-of-words
● Feature similarity (Hanawa, et al.): dot product, cosine similarity, etc.
● Gradient similarity (Pruthi, et al.): dot product between gradients
● Hessian (Koh, et al.): Hessian-vector-product

● Only consider part of the model or do PEFT like LoRA
● Subsampling the training set if it is too large

● Beyond performing analysis, influence or data attribution in general can do 
much more, a lot of paper use them to select data to improve performance
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Simfluence: Modeling the Influence of 
Individual Training Examples by 

Simulating Training Runs
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Explainable ML

● How does a model work?
○ Locally fitting a simple model at a test sample (LIME)
○ Look at how prediction changes by tweaking the sample (Saliency Maps)
○ Look at how training samples affect the prediction 



Training Data Attribution

● How does a training sample affect the success of a model?
○ If you take away a training sample, how does it affect the loss on a specific test sample 

(“influence”)?
○ Allows us to understand of which data sample is important for the model’s decision making

● Issue: too expensive to compute for every training sample :(
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Training Data Attribution

● What are some approaches to approximate this?
○ Approximate models with a kernel machine that is easier to compute influence score with 

(TRAK)
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Training Data Attribution

● What might be some issues with these approaches? 
○ Approximate the influence with Hessian (influence function)
○  
○  
○ If I have a dog image dataset with 100 Kodas, 1 Dub, and other dogs, and we are presented 

with a Koda picture for testing 
■ Removing a Koda image might do little to the loss, but removing the Dub image will have 

a larger impact on the loss (Noooo Koda >> Dub)



Training Data Attribution

● What might be some issue with these approaches? 
○ Compute during training how each sample influenced the prediction final (TracIn)
○ Early training samples will have a larger influence on the final loss!



● What was common with the previous approaches? 
● They gave only one score, and assume the scores to be additive. It can’t 

capture the complexity of influence

● How to address it?
● Use two numbers instead! Let’s in addition frame it as simulating how training 

on different samples influence the test sample performance

● Can I still …?
● Yes, as it’s a superset of previously mentioned techniques and more 

Simfluence



Simfluence

Goal of Simfluence: predict loss on a test sample for different training “curriculum”

“What if I had removed <X> group of examples from my training data?” “What if I 
had trained on <Y> first, then <X>?” “What if I duplicated <Z> ten times?”



Formulation 

Linear Markov process for each test sample z, and looks at the loss L 

Need to train m simulators for modeling m test samples, with in total 2n 
parameters



Optimization



Evaluation Metric 
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Related Works

Simfluence Influence 
function

TracIn TRAK

Influence score Two scores One score One score One score

Mechanism Simulation 
based

Influence 
function

Gradient based Sampling based

Compute 
bottleneck

Track 
performance of 
a test sample 
for 2n training 
samples

Compute 
Hessian (with 
some 
approximation 
speedups)

Do Simfluence 
method or an 
approximation 
by evaluating 
checkpoint

Simplify model 
with a kernel 
machine 
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Discussion Questions

● Do you think there could be a better “influence score”, instead of modeling a 
function?

● How would you design a better simulator? Something that goes beyond a 
linear setup? What are possible use cases?

● What do you think about their data requirements? 
● What do you think about their standard error? 
● How do you think about their evaluation? Are there issues with their setups? 



Discussion Questions

● Are you convinced by the choice of treating PBRF as ground truth? Can you think of an 
alternative method to verify the influence estimate?

● What are the differences between adding and subtracting an example from the training 
set under the notion of influence function?

● Applying to modern instruction-tuning setup, how would you pick and aggregate the 
feature given an example?

● What kind of inaccuracy do you expect the approximation would induce?
● What other analysis do you think is worth performing with influence function?
● Beyond the analysis angle, what other applications can you imagine with influence 

function?


