Scaling Laws of Synthetic Images for Model Training ... for Now

Lijie Fan, Kaifeng Chen, Dilip Krishnan, Dina Katabi, Phillip Isola, Yonglong Tian

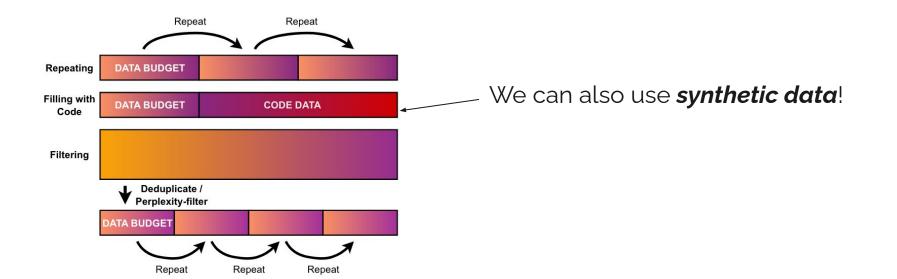
Presented By: Ben Newman

Why use *Synthetic Data*?

- Real data is **expensive**
- Running out of web data (Muennighoff et al., 2023)

Why use *Synthetic Data*?

- Real data is **expensive**
- Running out of web data (Muennighoff et al., 2023)



What scaling laws do we see when using *synthetic data*?

- Reminder: Scaling laws answer the question:
 - How do we partition a fixed amount of compute between model parameters and training data to achieve optimal performance (min loss, max accuracy, etc.)?

 $\operatorname{argmin}_{N,D} L(N,D) \text{ s.t. } \operatorname{FLOPs}(N,D) = C$

- Then we fit some curves:

$$L(N,D) = \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}} + E$$

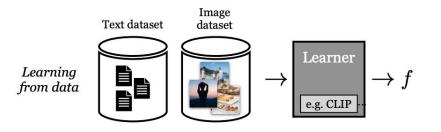
(Muennighoff et al., 2023)

What scaling laws do we see when using synthetic data?

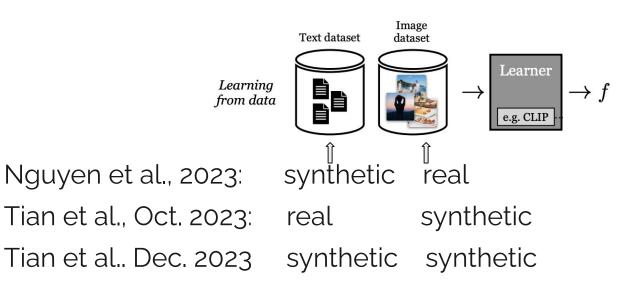
- In this paper, it's different:
 - Model parameters are basically constant (they use ViT-B)
 - Data is varied; Compute varies with data
- The question they ask is:

How much synthetic data is needed for desired performance?

 For image representation learning (text-image contrastive learning): synthetic data can perform equivalently to real data



 For image representation learning (text-image contrastive learning): synthetic data can perform equivalently to real data



(Tian et al., Dec. 2023)

- For image representation learning (text-image contrastive learning): synthetic data can perform equivalently to real data
- 2. For **image classification**, **synthetic data** *underperforms* **real data** (Sariyildiz et al., 2023)

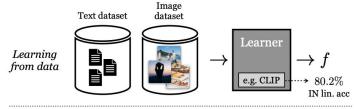
- For image representation learning (text-image contrastive learning): synthetic data can perform equivalently to real data
- 2. For **image classification**, **synthetic data** *underperforms* **real data** (Sariyildiz et al., 2023)
- 3. For image classification, synthetic data + real data can *outperform* real data (Aziz et al., 2023; Yu et al., 2023)

This Paper

Deep Dive

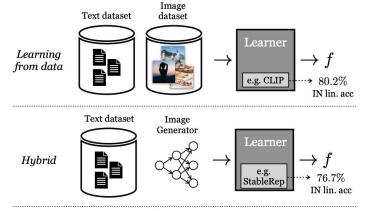
What's the background of this paper?

One of three from a collab btw Lijie Fan at MIT and Yonglong Tian at Google Research around synthetic data for representation learning



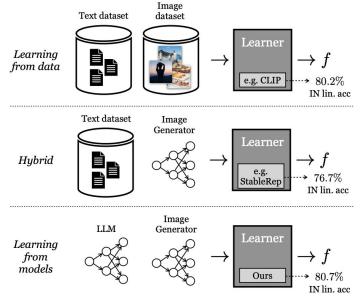
What's the background of this paper?

- One of three from a collab btw Lijie Fan at MIT and Yonglong Tian at Google Research around synthetic data for representation learning
- 1. Real captions & synthetic images representation learning (Tian et al., Oct, 2023)



What's the background of this paper?

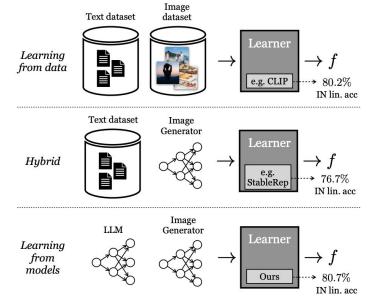
- One of three from a collab btw Lijie Fan at MIT and Yonglong Tian at Google Research around synthetic data for representation learning
- 1. Real captions & synthetic images for representation learning (Tian et al., Oct, 2023)
- Synthetic captions & synthetic images for representation learning (Tian et al., Dec 28, 2023)



Deep Dive

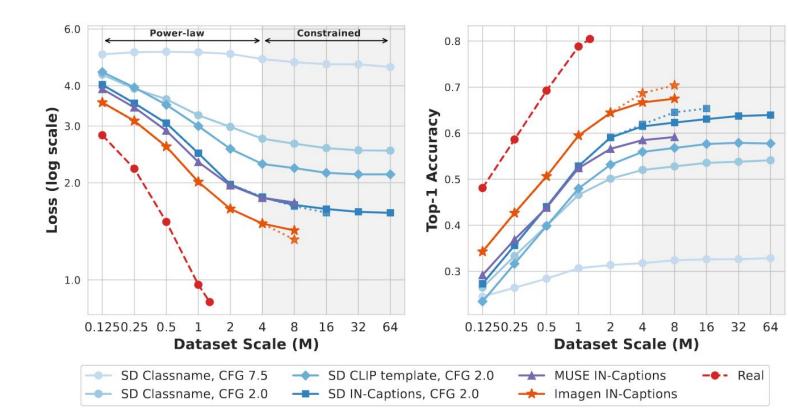
What's the background of this paper?

- One of three from a collab btw Lijie Fan at MIT and Yonglong Tian at Google Research around synthetic data for representation learning
- 1. Real captions & synthetic images for representation learning (Tian et al., Oct, 2023)
- Synthetic captions & synthetic images for representation learning (Tian et al., Dec 28, 2023)
- 3. This paper, scaling laws for synthetic data generation



Three main claims in this paper

- **1**. Synthetic data scaling for image classification:
 - a. worse than real data (in-domain),
 - b. better than real data (out-of-domain).
- 2. Class-based scaling
- 3. Synthetic data does scale well in CLIP model training

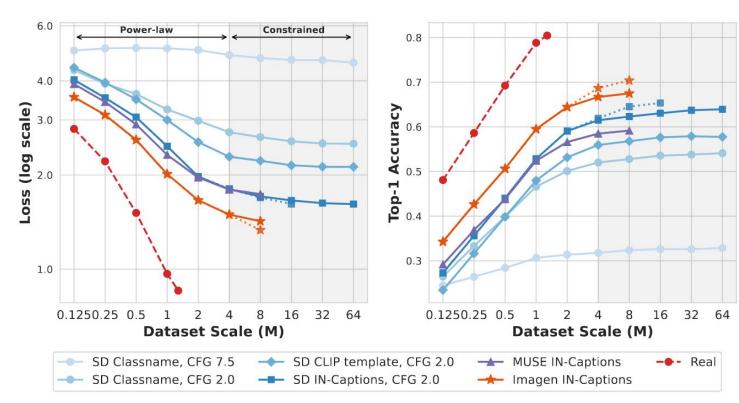


This Paper

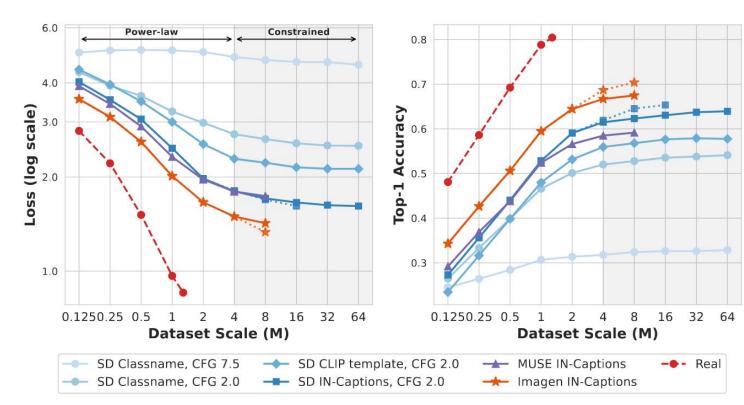
How does synthetic data scale?

Models (Dosovitskiy et al., 2023):

- ViT-Base
 (86M params)
- 2. ViT-Large (307M params)



- 2. Prompts to Generation Models
- 3. Classifier-Free Guidance



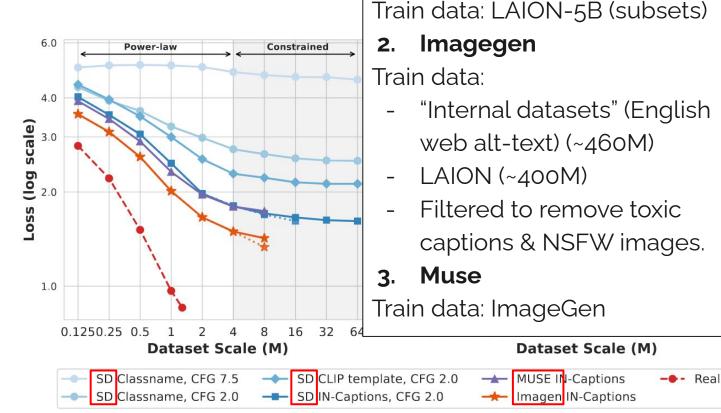
Synthetic Data

1. Stable Diffusion (SD)

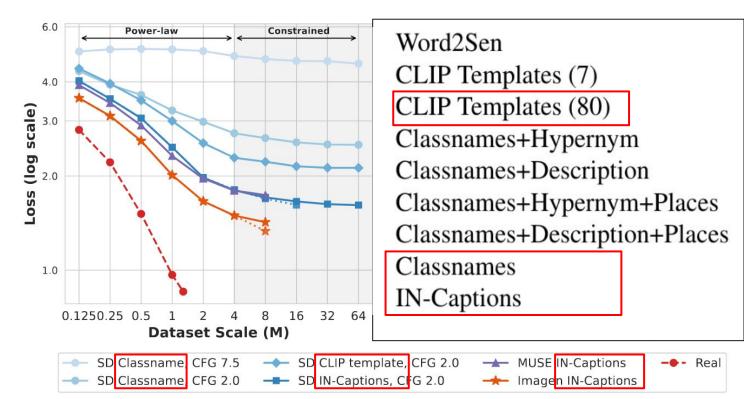
Deep Dive

How does synthetic data scale?

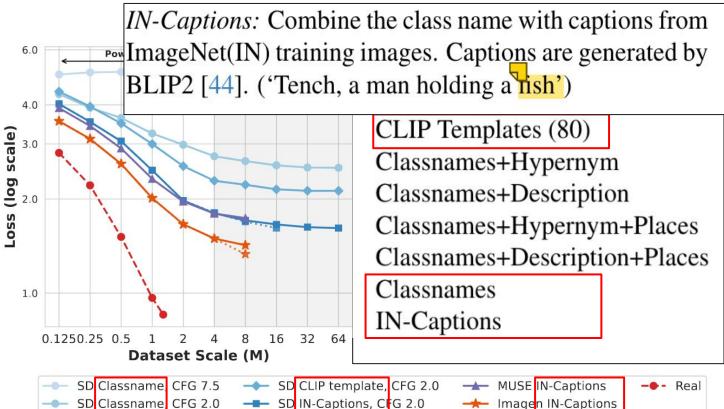
- 2. Prompts to Generation Models
- 3. Classifier-Free Guidance



- 2. Prompts to Generation Models
- 3. Classifier-Free Guidance



- 1. Image Generation Models
- 2. Prompts to Generation Models
- 3. Classifier-Free Guidance



- 2. Prompts to Generation Models
- 3. Classifier-Free Guidance

- Classnames: Directly use the ImageNet class name. ('Tench')
- *CLIP templates:* Generate either 7 or <u>80</u> sentences with the text templates CLIP used for zero-shot classification task. ('a photo of the large tench')
- *IN-Captions:* Combine the class name with captions from ImageNet(IN) training images. Captions are generated by BLIP2 [44]. ('Tench, a man holding a nish')

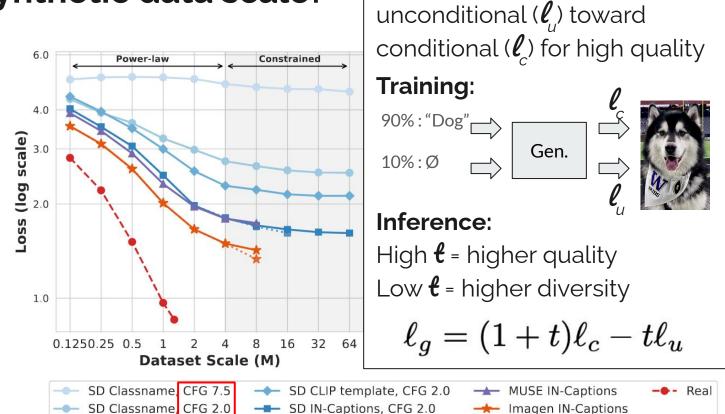
Synthetic Data

This Paper

Idea: move logits from the

Deep Dive

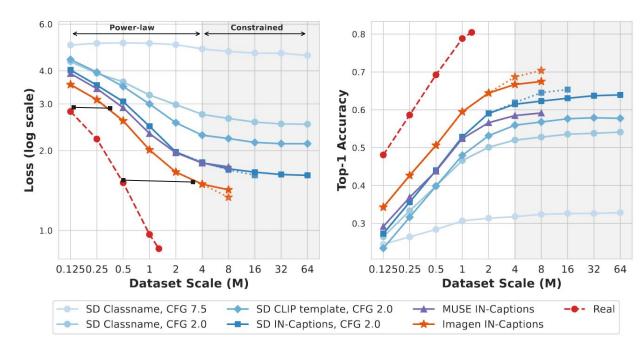
- 2. Prompts to Generation Models
- 3. Classifier-Free Guidance



This Paper

How does synthetic data scale?

 You need ~**3-8x** synthetic data than real data to achieve the same loss in **best case**

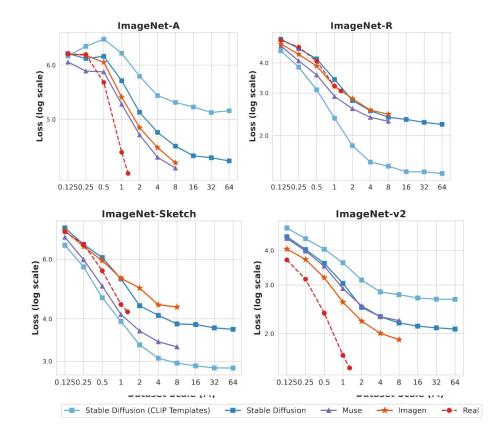


This Paper

How does synthetic data scale OOD?

Inconsistently!

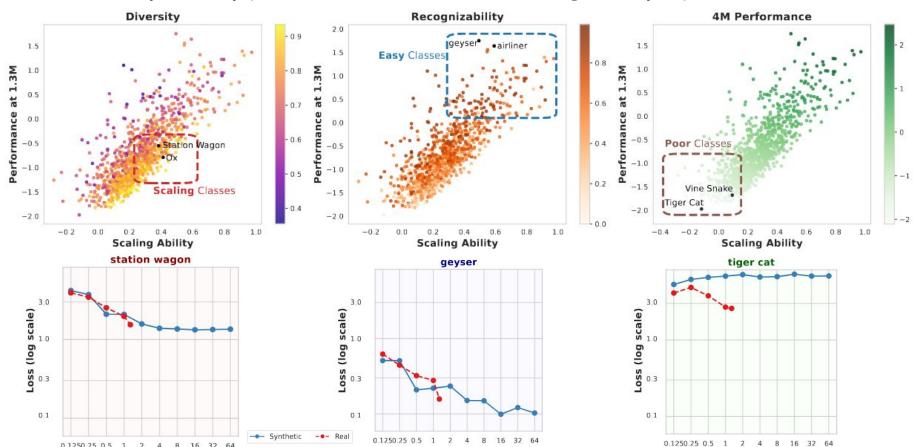
- Real data is better on ImageNet-A and ImageNet-v2
- Stable Diffusion (CLIP Templates) is best on Sketch and ImageNet. **Why?**



How does synthetic data scale per class?

Deep Dive

Inconsistently! - They point to three classes: "scaling", "easy", "poor"



References

 Azizi, Shekoofeh, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J. Fleet. 2023. "Synthetic Data from Diffusion Models Improves ImageNet Classification." arXiv. <u>http://arxiv.org/abs/2304.08466</u>.
 Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al.

2021. "An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale." arXiv. http://arxiv.org/abs/2010.11929.

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu,

and Dario Amodei. 2020. "Scaling Laws for Neural Language Models." arXiv. http://arxiv.org/abs/2001.08361.

Sariyildiz, Mert Bulent, Karteek Alahari, Diane Larlus, and Yannis Kalantidis. 2023. "Fake It till You Make It: Learning Transferable Representations from Synthetic ImageNet Clones." arXiv. <u>http://arxiv.org/abs/2212.08420</u>.

Muennighoff, Niklas, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. 2023. "Scaling Data-Constrained Language Models." arXiv. <u>http://arxiv.org/abs/2305.16264</u>.

- Nguyen, Thao, Samir Yitzhak Gadre, Gabriel Ilharco, Sewoong Oh, and Ludwig Schmidt. 2023. "Improving Multimodal Datasets with Image Captioning." arXiv. <u>http://arxiv.org/abs/2307.10350</u>.
- Tian, Yonglong, Lijie Fan, Phillip Isola, Huiwen Chang, and Dilip Krishnan. 2023. "StableRep: Synthetic Images from Text-to-Image Models Make Strong Visual Representation Learners." arXiv. <u>http://arxiv.org/abs/2306.00984</u>.
- Tian, Yonglong, Lijie Fan, Kaifeng Chen, Dina Katabi, Dilip Krishnan, and Phillip Isola. 2023. "Learning Vision from Models Rivals Learning Vision from Data." arXiv. <u>http://arxiv.org/abs/2312.17742</u>.

- *Classnames:* Directly use the ImageNet class name. ('Tench')
- *Classnames* + *Description:* Combine class name with its WordNet [50] description. ('tench, freshwater dace-like game fish of Europe and western Asia ...')
- *Classnames* + *Hypernyms:* Combine ImageNet class name with its Wordnet hypernyms. ('Tench, Tinca tinca, cyprinid, cyprinid fish')
- *Word2Sen:* Use a pre-trained T5 model [60] as used in [24] to convert the ImageNet class name into a sentence. We generate 100 sentences for each class. ('a tench with fish in the distance.')
- *CLIP templates:* Generate either 7 or 80 sentences with the text templates CLIP used for zero-shot classification task. ('a photo of the large tench')
- *IN-Captions:* Combine the class name with captions from ImageNet(IN) training images. Captions are generated by BLIP2 [44]. ('Tench, a man holding a nsh')

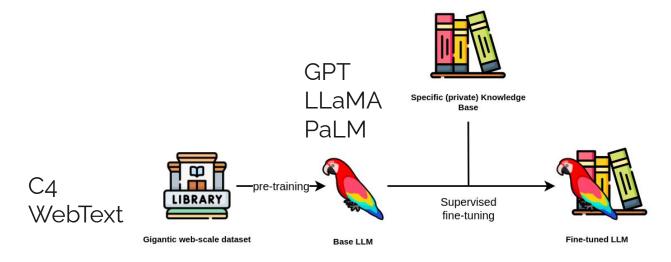
A Pretrainer's Guide to Training Data: Measuring the Effects of Data Age, Domain Coverage, Quality, & Toxicity

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny Zhou, Jason Wei, Kevin Robinson, David Mimno, Daphne Ippolito (2023)

Presented By: Cailin Winston

Pretraining LLMs

- Fine-tuning LLMs pretrained from large datasets is the norm.
- Why pretraining datasets are curated in a certain way is unclear.



Dataset Age

Dataset Quality

Dataset Composition

Pretraining Dataset Curation

Semi-curated, task-specific	: datasets	C4 dataset	C4 dataset					
Wikipedia, BookCorpus, One Word Benchmark.	e Billion	Cleaned, curated version Crawl for T5.	Cleaned, curated version of Common Crawl for T5.					
•	(Yang et al., 2019)	•	Radford et al., 2019					
(Zhu et al., 2015),	•	Raffel et al., 2020	•					
(Chelba et al., 2013)	Use of web-scraped data		WebText					
	Use of Common Crawl for X	KLNet.	Websites from highly-ranked Reddit posts for GPT-2.					

- Web text, books, news, code, Wikipedia, dialog, multilingual data.

Pretraining Dataset Curation

Represented Domains (%) Filters Data Model Wiki M-L Tox Oual Pub Year Web Books Dialog Code Acad Pile C4 Bert 76 24 X X Η Part 2018 GPT-2 100 X X Η Part 2019 RoBerta 7 90 3 X Η 2019 V Part 8 × **XLNet** 89 3 V Η 2019 Part T_5 <1 99 X V Н Η ~ 2019 3 82 X GPT-3 16 V 7% С 2021 X GPT-J/Neo 1.5 38 15 4.5 С 2020 13 28 1 Part V GLAM 6 46 20 28 X С X 2021 V LAMDA 13 50 13 10% С С 2021 24 V V X Η AlphaCode X X 2021 100 X CodeGen 10 3 40 22 V Part Η Part 2020 1 24 65 1 10 V Η С 2021 CHINCHILLA 4 V X 1.5 <1% С 2022 Minerva <1 <1 2.5 <1 95 1 ~ X С **BLOOM** 5 60 10 5 10 10 71% Η Part 2021 V V PALM 28 13 50 5 22% С 2021 4 x V X Galactica Η 2022 7 1 84 V Part Part 1 4.5 LLAMA 82 4.5 2 4.5 2.5 4% С 2020 Part Part ~

(1) Some are specialized but most use varied domains.

Pretraining Dataset Curation

Represented Domains (%) FILTERS Data Model Web Books M-L Tox Oual Pub Year WIKI Dialog Code Acad Pile C4 Bert 76 24 x X Η Part 2018 GPT-2 100X Η Part 2019 X RoBerta 7 X Η 2019 90 3 1 Part 8 3 X **XLNet** 89 Η 2019 V Part T_5 <1 99 x Н Η ~ 2019 ~ 3 X GPT-3 82 16 7% С 2021 ~ X 1.5 GPT-I/Neo 15 4.5 ~ С 2020 38 13 28 Part V GLAM 6 46 20 28 x С X 2021 V LAMDA 13 50 13 10% C С 2021 24 V V X Η AlphaCode х 2021 100 X X CodeGen 1 10 3 40 22 V Part Η Part 2020 24 65 1 10 Η С 2021 CHINCHILLA 4 V V X 1.5 <1% С 2022 Minerva <1 <1 2.5 <1 95 1 V X С **BLOOM** 5 60 10 5 10 10 ~ 71% Η Part 2021 ~ PALM 28 13 50 5 22% С 2021 x X 4 1 Η 2022 GALACTICA 7 84 V Part Part 4.5 LLAMA 82 4.5 2 4.5 2.5 4% С 2020 Part Part

(1) Some are specialized but most use varied domains.

(2) Frequent use of web data and C4.

Dataset Age

Dataset Quality

Pretraining Dataset Curation

	Represented Domains (%)								Filters		Data			
Model	Wiki	Web	Books	Dialog	Code	Acad	Pile	C4	M-L	Tox	Qual	Pub	Year	_
Bert	76		24				×	×			Н	Part	2018	
GPT-2		100					×	×			Н	Part	2019	
RoBerta	7	90	3				×	~			Н	Part	2019	
XLNet	8	89	3				×	~			Н	Part	2019	
T5	<1	99					×	~		H	Н	~	2019	
GPT-3	3	82	16				×	~	7%		С	×	2021	
GPT-J/Neo	1.5	38	15	4.5	13	28	~	Part			С	~	2020	
GLAM	6	46	20	28			×	~			С	×	2021	
LaMDA	13	24		50	13		~	~	10%	C	С	×	2021	
AlphaCode					100		×	×			Н	×	2021	
CodeGen	1	24	10	3	40	22	~	Part			Н	Part	2020	
Chinchilla	1	65	10		4		~	~		H	С	×	2021	
Minerva	<1	1.5	<1	2.5	<1	95	~	~	<1%		С	X	2022	(3) Quality
BLOOM	5	60	10	5	10	10	~	~	71%	H	С	Part	2021	-
PALM	4	28	13	50	5		×	~	22%		С	×	2021	filters are
Galactica	1	7	1		7	84	~	Part			Н	Part	2022	applied.
LLAMA	4.5	82	4.5	2	4.5	2.5	Part	~	4%		С	Part	2020	

(1) Some are specialized but most use varied domains.

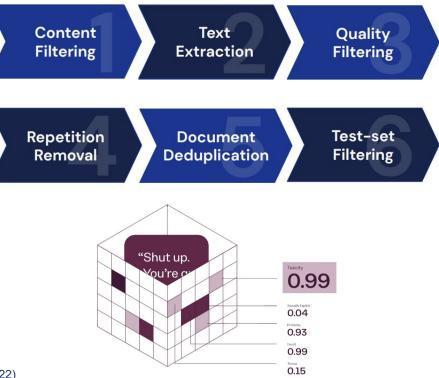
(2) Frequent use of web data and C4.

Dataset Quality

Dataset Composition

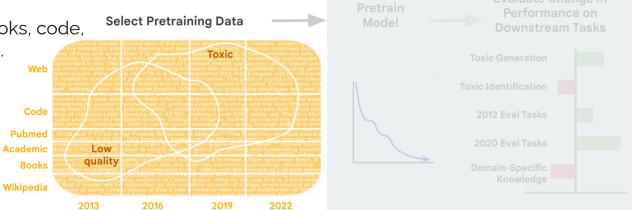
Dataset Quality and Toxicity

- Quality filters:
 - Classifier & heuristics
- Toxicity filters:
 - Black-box commercially available APIs
- Lack of ground truth for definitions of quality.



Evaluation of Dataset Curation on Pretrained Models

- 1) C4 (Raffel et al., 2020)
 - Cleaned version of Common Crawl
- 2) The Pile (Gao et al., 2020)
 - Common Crawl + books, code, various domains, etc.
- Both are deduplicated (Lee et al., 2022).

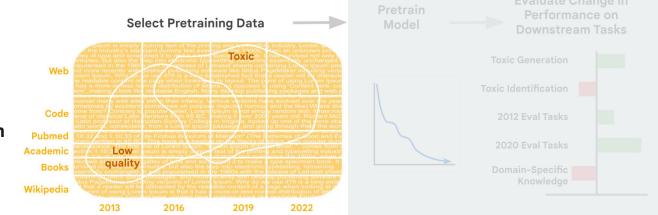


Dataset

Composition

Evaluation of Dataset Curation on Pretrained Models

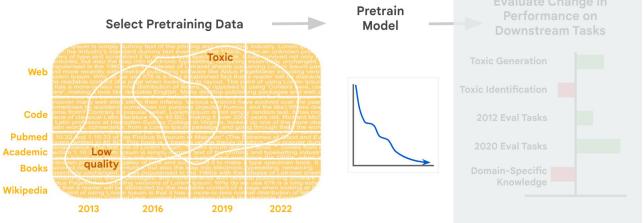
- 2) Quality and toxicity filtering
- 3) Domain composition



Dataset

Evaluation of Dataset Curation on Pretrained Models

- 1) Dataset age
- 2) Quality and toxicity filtering
- 3) Domain composition



1) LM-XL (1.5B)

Dataset

Composition

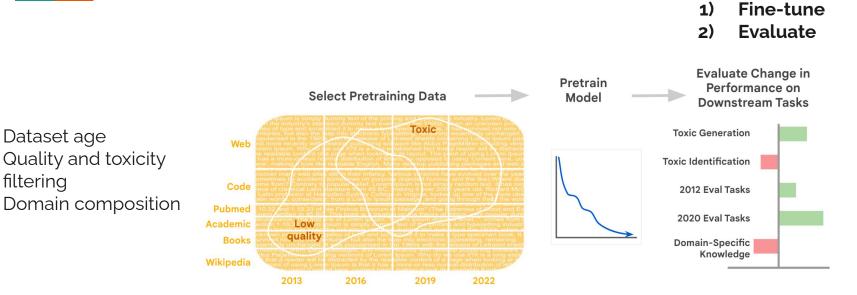
2) LM-SMALL (20M)

Evaluation of Dataset Curation on Pretrained Models

1)

2)

3)



1) LM-XL (1.5B)
 2) LM-SMALL

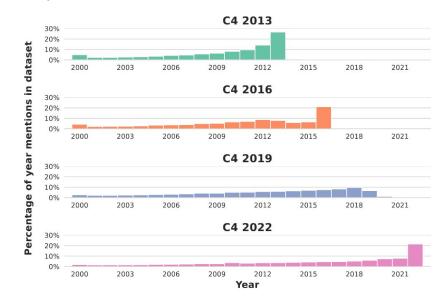
(20M)

Impact of Data Curation on Data Characteristics

- Time
 - Percent non-ascii characters increasing.
 - Text quality decreasing.
- Toxicity and quality
 - Inversely correlated (e.g., books).
- Domains
 - Books are high quality but high toxicity.
 - Technical domains have lower quality. \rightarrow poor filters

Impact of Dataset Age on Pretrained Models

- Majority of models downloaded on HuggingFace < 2020.
- Create time-snapshots of Common Crawl (C4).



Impact of Dataset Age on Pretrained Models

- Temporal misalignment between pre-training and evaluation datasets impact performance negatively.
- More fine-tuning does not improve performance.

Impact of Dataset Age on Pretrained Models

- Impact is worse when pretraining precedes evaluation years.



Impact of Domain Composition on Pretrained Models

- Common Crawl, OpenWeb and Books have strongest positive effects.

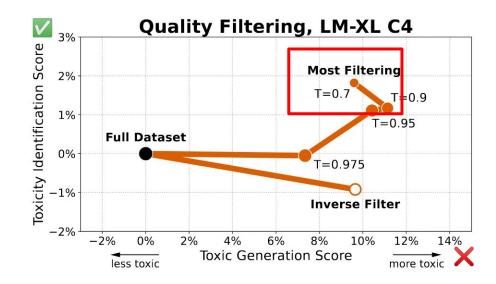
Dataset

- Domain heterogeneity (multiple sources, domains) is critical.

	Wiki	Web	Books	Biomed	Academic	Common Sense	Contrast Sets	Average	
Full Dataset (100%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 8
No Social (99%)	-0.8	-3.7	2.6	0.1	3.5	-3.5	3.5	0.4	- 6
No Wiki (98%)	-1.3	-5.3	3.0	0.2	0.9	-4.4	7.2	-0.3	- 4
No Books (93%)	-3.5	-6.3	1.0	0.0	-1.6	-6.5		-2.7	- 2
No OpenWeb (93%)	-2.0		0.1	-1.0	0.6	-5.8	-2.9	-1.4	- 0
No Legal (91%)	-2.7	-2.9	3.8	0.4	0.8	-2.6	-0.4	-0.6	-0
No Academic (87%)	-0.3	-2.5	0.3	-0.9	2.2	-1.1	4.3	0.2	2
No Pubmed (85%)	-0.3	-3.0	3.9	-5.8	-1.5	-5.9	3.9	-1.2	4
No Code (81%)	-0.5	-3.1	2.9	-1.2	1.2	-5.8	4.4	-0.1	6
No CC (73%)	-3.2	-6.2	-2.9	-4.6	-5.9	-8.0	-5.2	-4.8	8

- **Quality**: Use classifier employed by PaLM and GLaM
 - 0 (high, 🚺) -> 1 (low)
 - High quality examples are books, certain webpages (Du et al., 2022)
- **Toxicity**: Jigsaw's Perspective API
 - 0 (low, 🚺) -> 1 (high)
 - Has been shown to be unreliable (Pozzobon et al., 2023)

- Quality filters improve (1) toxic identification and (2) QA tasks.



- Quality filters improve (1) toxic identification and (2) QA tasks.

	Wiki	Web	Books	Biomed	Academic	Common Sense	Contrast Sets	Average	
Inverse T=0.5 (73%)	-5.0	-4.5	2.1	-2.2	-2.7	1.2	-6.4	-3.1	- 6
Full Dataset (100%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 4
T=0.975 (91%)	1.2	0.7	-2.2	6.1	6.4	4.7	6.1	2.5	-2
T=0.95 (84%)	-1.2	1.0	-4.0	3.7	-0.3	3.2	4.9	1.0	- 0
T=0.9 (73%)	-0.3	0.8	-3.5	1.8	1.0	1.9	6.8	1.2	4
T=0.7 (46%)	-1.2	0.8	-6.7	1.7	0.8	2.0	4.2	0.7	6

- Toxicity filters worsen downstream task performance.
- Likely due to toxicity and quality tradeoff.

	Wiki	Web	Books	Biomed	Academic	Common Sense	Contrast Sets	Average	
Inverse T=0.06 (92%)	0.4	-1.4	3.8	0.7	4.9	4.1		1.7	- 4
Full Dataset (100%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-3
T=0.95 (98%)	-1.0	-0.4	0.2	-0.5	0.6	1.7	1.3	0.2	- 1
T=0.9 (95%)		-1.1	-0.6	-3.0	0.2	2.9	0.2	-0.7	- 0
T=0.7 (86%)	-2.1	-1.4	0.1	-2.9	0.1	-0.9	-0.2	-1.2	1
T=0.5 (76%)	-4.2		-0.9	-3.3	-1.1	-0.3	-0.1	-2.0	2
T=0.3 (61%)	-3.8	-4.4	-1.4	-2.5	-0.3	-1.3	-3.5	-2.7	4

References

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny Zhou, Jason Wei, Kevin Robinson, David Mimno, Daphne Ippolito. 2023. "A Pretrainer's Guide to Training Data: Measuring the Effects of Data Age, Domain Coverage, Quality, & Toxicity." arXiv. <u>https://arxiv.org/abs/2305.13169</u>.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. 2022. "Scaling language models: Methods, analysis & insights from training Gopher." arXiv. <u>https://arxiv.org/abs/2112.11446</u>.

Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Sewoong Oh, Ludwig Schmidt. 2023. "Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP." arXiv. <u>https://arxiv.org/abs/2208.05516</u>.

Tomas Bratanic. Fine Tuning Retrieval Augmented Generation.

https://neo4j.com/developer-blog/fine-tuning-retrieval-augmented-generation/.

Shibani Santurkar, Yann Dubois, Rohan Taori, Percy Liang, Tatsunori Hashimoto. 2022. "Is a Caption Worth a Thousand Images? A

Controlled Study for Representation Learning." arXiv. https://arxiv.org/abs/2207.07635.

Luiza Pozzobon, Beyza Ermis, Patrick Lewis, Sara Hooker. 2023. "On the Challenges of Using Black-Box APIs for Toxicity Evaluation in Research." arXiv. <u>https://arxiv.org/abs/2304.12397</u>

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al. 2021. "GLaM: Efficient scaling of language models with mixture-of-experts." <u>https://arxiv.org/pdf/2112.06905</u>.

Questions?

Discussion Questions

Discussion Questions

Scaling Laws of Synthetic Images for Model Training ... for Now

- 1. How can we use the real vs. synthetic set up to learn about the synthetic+real data case?
- 2. Which do we care more about: Scaling laws for image classifiers or Scaling laws for representation learning algorithms? Why is there a gap between these?
- 3. Why does Stable Diffusion do so much better on the sketch and artistic rendering OOD imagenet datasets?
- 4. Why are the "poor" classes so difficult?

A Pretrainer's Guide to Training Data: Measuring the Effects of Data Age, Domain Coverage, Quality, & Toxicity

- How will the intuitions gained from this research guide the way we approach fine-tuning models for new tasks?
- 2. Will the trends we see here apply to areas of ML/DL outside of LLMs?
- 3. How can we determine when older datasets will start negatively impacting training tasks?
- 4. How do we address the tradeoff between quality and toxicity?