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Advent of LLMs
# parameters # tokens

2020 GPT-3 175B 300B

2021 Jurassic-1 178B 300B

Gopher 280B 300B

2022 Megatron-Turing 
NLG

530B 270B

LaMDA 137B 168B

Table data from [1, 2, 3, 4, 5]



Problem: Resource Costs
> Training LLMs comes with a high compute and 

energy cost
> Cost increases with model size

����
Table 3 from Energy and Policy Considerations for Deep Learning in NLP [6]



Problem: Resource Costs
> FLOPs: floating point operations

C ≈ 6ND
– C: non-embedding training compute ←this is constrained
– N: number of model parameters
– D: number of tokens

> Goal: maximize model performance by finding 
optimal values for N and D



The Question
> “Given a fixed FLOPs budget, how should one 

trade-off model size and the number of training 
tokens?”

C

N
D



Power Law (Before Chinchilla)
> Scaling Laws for Neural Language Models, Kaplan et 

al. [7]

> Power-law relationship between training test loss 
and:
– C: non-embedding training compute
– N: number of model parameters
– D: number of tokens

Example Power Curve

https://arxiv.org/abs/2001.08361


Power Law (Before Chinchilla)
> Large models should not be trained to their lowest 

possible loss

Figure 2 from Scaling Laws for Neural Language Models[7]



Power Law (Before Chinchilla)
> If doubling N with a fixed batch size, increase D by 

1.7x
> If doubling N with a compute-efficient batch size, 

increase D by 1.3x
In other words:

N∝C0.73    and     

D∝C0.27 



Key Contribution
> N and D should scale equally

N∝C0.73    and    D∝C0.27 

~0.50 ~0.50

 → many past models can be reduced in size



Deep Dive: 3-Pronged Approach
> Approach 1: fix N, vary D

Figure 2. Training curve envelope.



Deep Dive: 3-Pronged Approach
> Approach 2: IsoFLOP profiles

(Fix C, vary N and D)

Figure 3. IsoFLOP Curves.



Deep Dive: 3-Pronged Approach
> Approach 3: Fit a parametric loss function

– Estimate parameters using the optimization algorithm 
L-BFGS



Deep Dive: 3-Pronged Approach

a b

Kaplan et al. 0.73 0.27

Approach 1 0.50 0.50

Approach 2 0.49 0.51

Approach 3 0.46 0.54

N∝Ca    and    D∝Cb 



Deep Dive: 3-Pronged Approach
“current large language models are significantly undertrained”

Figure 1. Models with scaling law predictions. [8]



Before Chinchilla: Gopher
> 280B parameters
> 300B training tokens



Chinchilla
> Decreases N by 4x

and increases D by 4x
> 280B 70B parameters
> 300B 1.4T training tokens



Performance: Chinchilla vs. Gopher
> Chinchilla performs better across the board, 

including on downstream tasks

Figure 5. Pile Evaluation with bits-per-byte improvement. [8]



Performance: Chinchilla vs. Gopher
> Less affected by bias and toxicity than Gopher

Table 10: Winogender results showing pronounce resolution. [8]



Impact & Response
> Debates on general applicability of scaling laws

→ PaLM 2: “We validate this study for larger amounts 
of compute and similarly find that data and model size 
should be scaled roughly 1:1” [9]

PaLM Technical Report Figure 5. [9]



Impact & Response
> Debates on general applicability of scaling laws

1

→ DeepSeek presents a new scaling law:[19]

(M = FLOPs/token)

DeepSeek IsoFLOP Figure 5. [19]



Impact & Response
 “This calls for … a high focus on dataset quality.”

> DeepSeek 

(1) confirms dataset quality matters
(2) shows higher data quality means more compute should be 
allocated to model scaling
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Table 4 on scaling coefficients from DeepSeek. [19]



Impact & Response
> Brought more attention to importance of dataset 

size… along with some worries:

From LessWrong [10]

Some sorts of a rebuttal. [11]



Scaling Data-Constrained Language Models
Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, 
Nouamane Tazi, Sampo Pyysalo, Thomas Wolf, Colin Raffel



Fig. 1 (centre) from [11]

What happens when we run out of tokens?



Figure 1 from [12]

What if we are working in a data-constrained domain?



How to scale further data-constrained settings?
1. Repeat data (multiple epochs)
2. Add non-natural-language data (e.g. code)
3. Include “lower-quality” data (e.g. remove filters)



How to scale further data-constrained settings?
1. Repeat data (multiple epochs)
2. Add non-natural-language data (e.g. code)
3. Include “lower-quality” data (e.g. remove filters)



Repeated data considered harmful

Figure 2 (left) from [18]



But is repeated data actually bad?

Validation loss 
does not jump 
until 5th epoch!

Figure 6 from [13]



Given a fixed FLOPs budget, how should one trade-off 
model size and the number of training tokens?

Given a fixed FLOPs budget and fixed amount of 
distinct data, how should one trade-off model size and 

the number of epochs?



Strategy: Parametric model
Take chinchilla model and augment for repeated data!



Modelling repeated data
Data utility as exponential decay:

“effective tokens” = Repeating U tokens RD times is 
roughly the same as having D’ unique tokens.

“effective” 
tokens

unique
tokens

decay
rate

number of 
repetitions



Modelling repeated data
Data utility as exponential decay:

Using sum of a geometric series:

“effective” 
tokens

unique
tokens

decay
rate

number of 
repetitions

We could directly estimate δ, but the paper goes further to define 
it in terms of “optimal number of repetitions”



Modeling repeated data
Define RD

* ~= ‘maximum useful number of repeats’

R* = 0 → repeated data is useless
R* = ∞ → repeated data is as good as new data



Modelling repeated parameters
We perform the same steps for ‘repeating parameters’ 
to model how excess parameters behave, yielding a 
similar equation:

unique 
params

~=
“optimal”

parameters

optimal 
repetitions 
for params

actual 
number of 
repetitions



Modelling repeated data and parameters
Recall chinchilla “law”:

Now we have a way to represent ‘effective’ parameters 
and data, we replace N, U with those:

unique 
params/

data

repeated 
params/

data



Fitting our model
We set A, B, α, β, UN using the chinchilla law, then learn 
the optimal repetitions for parameters and data:



Fitting our model
RD

* ~= 15.4
RN

* ~= 5.3

15 epochs before we see rapidly diminishing returns.
5x larger model before we see rapidly diminishing returns.

Suggests scaling epochs quicker than model size.



Experiments: Fixed Compute Budget



Experiments: Fixed Data Budget



Experiments: Return on scaling



Alternative strategy: Data augmentation
Having up to 50% 
of your data be 
code doesn’t hurt 
performance!

Performance 
across tasks, not 
perplexity/loss



Impact
We have effectively 8x more data:
> Double dataset size by adding code
> Repeat for 4 epochs

…and more gains possible if you keep training.

> what about about memorization…?



Impact

Perhaps a “default setting” in the future?

[14]

[15]

[16]

[17]
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Empirically, we have repeated some data

Table 2.2 from [1], showing the training mix used for GPT-3



Empirically, little overfitting

Figure 4.1 from [1] 



Modelling repeated data
We define

Why? So as RD goes to infinity, D’ goes to U + RD
*U.

We assume δ is small, and get two approximations:



Modelling repeated data
We assume δ is small, and get two approximations:

Therefore:

And now we can directly modify our original equation:

Recall:



What do we fit on?

All GPT-2-style decoder-only models with cosine LR decay. No early stopping. Using C4.
Figure from Sasha Rush’s talk on the paper (https://www.youtube.com/watch?v=Kp5R6GZh8O0)



What do we fit on?



Experiments: Fixed Data Budget



Fitting our model
We set UN as the optimal number of parameters for UD 
and our compute cost based on the chinchilla laws.

We then find A, B, α, β by fitting on the original chinchilla 
laws. This is done on experiments on C4 and gives:


